Skip to main content

Part of the book series: Springer Series in Experimental Entomology ((SSEXP))

Abstract

Endothermic biological oxidations that are terminated by environmental oxygen are by far the predominate sources of energy in tissues or cells of insects; therefore, any more extensive metabolic conversion in the body should affect the intensity of respiration in one or another tissue. Respirometric data are less specific than the usual biochemical criteria for measuring intermediary cellular metabolism: they reflect the summation of all metabolic processes operative in the complex system of tissues and organs. It is generally accepted, however, that the changes found in tissue respiration are the best indication of metabolic changes associated with growth, development, and the maintenance or performance of physiological or biochemical functions. Although the literature contains extensive data on respiration of whole insects (for review see Keister and Buck 1974), our knowledge concerning rates of tissue respiration is incomplete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernardini PM, Laudani U (1966) La consommation d’oxygène de la glande prothoracique de Leucophaea maderae et Periplaneta americana d’après l’aspect histologiques des organes endocrines. J Insect Physiol 12: 1289–1294

    Article  Google Scholar 

  • Bodine JH (1950) To what extent is oxygen uptake of the intact embryo related to that of its homogenate? Science 112: 110–111

    Article  PubMed  CAS  Google Scholar 

  • Bodine JH, Lu KH (1950) Oxygen uptake of intact embryos, their homogenates and intracellular constituents. Physiol Zool 23: 301–308

    PubMed  CAS  Google Scholar 

  • Bodine JH, West WL (1953) Respiratory quotients of intact egg, isolated embryo and embryo homogenate. Iowa Acad Sci 60: 594–598

    Google Scholar 

  • Brown JJ, Chippendale GM (1977) Ultrastructure and respiration of the fat body of diapausing and non-diapausing larvae of the corn borer, Diatraea grandiosella. J Insect Physiol 23: 1135–1142

    Article  Google Scholar 

  • Buck J (1962) Some physical aspects of insect respiration. Annu Rev Entomol 7: 27–56

    Article  Google Scholar 

  • Crisp DJ, Thorpe WH (1947) A metal micro-respirometer of the Barcroft type suitable for small insects and other animals. J Exp Biol 24: 304–309

    PubMed  CAS  Google Scholar 

  • Degn H, Lundsgaard JS, Petersen LC, Ormicki A (1980) Polarographic measurement of steady state kinetics of oxygen uptake by biochemical samples. Methods Biochem Anal 26: 47–77

    Article  PubMed  CAS  Google Scholar 

  • Dixon M (1951) Manometric methods as applied to the measurement of cell respiration and other processes, 3rd ed, Cambridge University Press, New York

    Google Scholar 

  • Fourche J (1964) Un respiromètre électrolytique pour l’étude des pupes isolées de Drosophile. Bull Biol Fr Belg 48: 475–489

    Google Scholar 

  • Fourche J, Ambrosioni JC (1969) Le métabolisme respiratoire au cours des métamorphoses, respiration in vitro des ovaires de Bombyx mori. J Insect Physiol 15: 1991–1997

    Article  Google Scholar 

  • Gilby AR, Rumbo ER (1980) Water loss and respiration of Lucilia cuprina during development within the puparium. J Insect Physiol 26: 153–162

    Article  CAS  Google Scholar 

  • Gilson WE (1963) Differential respirometer of simplified and improved design. Science 141: 531–532

    Article  PubMed  CAS  Google Scholar 

  • Glick D (1949) Techniques of Histo- and Cytochemistry. Interscience, New York

    Google Scholar 

  • Hamilton AG (1959) The infra-red gas analyser as a means of measuring the carbon dioxide output of individual insects. Nature 184: 367–369

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AG (1964) The occurrence of periodic or continuous discharge of carbon dioxide by male desert locusts (Schistocerca gregaria Forskal) measured by infra-red gas analyser. Proc R Soc Lond (Biol) 160: 373–395

    Article  CAS  Google Scholar 

  • Jones JC (1977) The circulatory system of insects. Thomas, Springfield, Ill.

    Google Scholar 

  • Keeley LL, Friedman S (1967) Corpus cardiacum as a metabolic regulator in Blaberus discoidalis Serville (Blattidae) I. Long-term effects of cardiacectomy on whole body and tissue respiration and on trophic metabolism. Gen Comp Endocrinol 8: 129–134

    Article  CAS  Google Scholar 

  • Keister M, Buck J (1974) Respiration: Some exogenous and endogenous effects on rate of respiration. In: Rockstein M (ed) The physiology of Insecta, 2nd ed, pp 469–509. Academic Press, New York

    Google Scholar 

  • Kleinzeller A (1965) Manometrische Methoden und Ihre Anwendung in Biologie und Biochemie. Fischer, Jena, GDR

    Google Scholar 

  • Klekowski RZ, Zajdel JW (1972) Capacity electrolytic respirometer KZ-CEROIT with review and discussion of electrolytic respirometry. Pol Arch Hydrobiol 19: 475–504

    CAS  Google Scholar 

  • Kuusik A (1976) Cyclic gas exchange in adult Coleoptera studied by continuous gas-chromatographic registration. Izv Akad Sci Estonian SSR 25: 97–105

    CAS  Google Scholar 

  • Kuusik A (1977) Cyclic gas exchange in diapausing pupae of Pieris brassicae L. and P. rapae L. (Lepidoptera, Pieridae). Izv Akad Sci Estonian SSR 26: 96–101

    Google Scholar 

  • Leenders HJ, Knoopien WG (1973) Respiration of larval salivary glands of Drosophila in relation to the activity of specific genome loci. J Insect Physiol 19: 1793–1800

    Article  PubMed  CAS  Google Scholar 

  • Lessler MA, Brierley GP (1969) Oxygen electrode measurements in biochemical analysis. Methods Biochem Anal 17: 2–29

    Google Scholar 

  • Ludwig D, Barsa MC (1956) Oxygen consumption of whole insects and insect homogenates. Biol Bull 110: 77–82

    Article  CAS  Google Scholar 

  • Ludwig D, Barsa MC (1957) Respiratory metabolism of homogenates during the embryonic development of the mealworm, Tenebrio molitor Linnaeus, with added substrates and inhibitors. Ann Entomol Soc Am 50: 475–477

    CAS  Google Scholar 

  • Löscher M (1968) Hormonal control of respiration and protein synthesis in the fat body of the cockroach Nauphoeta cinerea during oocyte growth. J Insect Physiol 14: 499–511

    Article  Google Scholar 

  • Mill PJ (1974) Respiration: Aquatic insects. In: Rockstein M (ed) The physiology of Insecta, 2nd ed, pp 403–467. Academic Press, New York

    Google Scholar 

  • Miller PL (1974) Respiration-aerial gas transport. In: Rockstein M (ed) The physiology of Insecta, 2nd ed, pp 345–402. Academic Press, New York

    Google Scholar 

  • Müller HP, Engelmann F (1968) Studies on the endocrine control of metabolism in Leucophaea maderae (Blattaria) II. Effect of the corpora cardiaca on fat-body respiration. Gen Comp Endocrinol 11: 43–50

    Article  PubMed  Google Scholar 

  • Oberlander H (1980) Tissue culture methods. In: Miller TA (ed) Cuticle techniques in arthropods, pp 235–272. Springer, New York

    Google Scholar 

  • Punt A (1950) The respiration of insects. Physiol Comp 2: 59–74

    Google Scholar 

  • Punt A (1956) Further investigations on the respiration of insects. Physiol Comp 4: 121–131

    CAS  Google Scholar 

  • Putman RS (1976) The gas chromatograph as a respirometer. J Appl Ecol 13: 445–452

    Article  CAS  Google Scholar 

  • Sacktor B (1974) Biological oxidations and energetics in insect mitochondria. In: Rockstein M (ed) The physiology of Insecta, 2nd ed, pp 271–355. Academic Press, New York

    Google Scholar 

  • Samuels A (1956) The effect of sex and allatectomy on the oxygen consumption of the thoracic musculature of the insect, Leucophaea maderae. Biol Bull 110: 179–183

    Article  Google Scholar 

  • Scholander PF (1942) Volumetric microrespirometers. Rev Sci Instrum 13: 32–33

    Article  CAS  Google Scholar 

  • Scholander PF (1950) Volumetric plastic microrespirometer. Rev Sci Instrum 21: 378–380

    Article  Google Scholar 

  • Scholander PF, Iversen O (1958) New design of volumetric respirometer. Scand J Clin Lab Invest 10: 429–431

    Article  PubMed  CAS  Google Scholar 

  • Scholander PF, Claff CL, Andrews JR, Wallach DF (1951) Microvolumetric respirometry. J Gen Physiol 35: 375–395

    Article  Google Scholar 

  • Slâma K (1965) Effect of hormones on the respiration of body fragments of adult Pyrrhocoris apterus L. (Hemiptera). Nature 205: 416–417

    Article  Google Scholar 

  • Tadmor U, Applebaum SW, Kafir R (1971) A gas chromatographic micromethod for respiration studies on insects. J Exp Biol 54: 437–441

    PubMed  CAS  Google Scholar 

  • Taylor P (1977) A continuously recording respirometer, used to measure oxygen consumption and estimate locomotor activity in tsetse flies, Glosina morsi-tans. Physiol Entomol 2: 241–245

    Article  Google Scholar 

  • Tobias JM (1942) Membrane interferometer manometer. Rev Sci Instrum 13: 232–233

    Article  CAS  Google Scholar 

  • Tobias JM (1943) Microrespiration techniques. Physiol Rev 23: 51–75

    Google Scholar 

  • Umbreit WW, Burris RH, Stauffer JF (1972) Manometric and biochemical techniques, 5th ed. Burgess, Minneapolis

    Google Scholar 

  • Wang CH (1967) Radiorespirometry. Methods Biochem Anal 15: 312–368

    Google Scholar 

  • Wiens AW, Gilbert LI (1965) Regulation of cockroach fat-body metabolism by the corpus cardiacum in vitro. Science 150: 616–617

    Article  Google Scholar 

  • Wightman JA (1977) Respirometry techniques for terrestrial invertebrates and their application to energetics studies. NZ J Zool 4: 453–469

    Article  Google Scholar 

  • Winteringham FPW (1959) An electrolytic respirometer for insects. Lab Pract 8: 372–376

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Sláma, K. (1984). Microrespirometry in Small Tissues and Organs. In: Bradley, T.J., Miller, T.A. (eds) Measurement of Ion Transport and Metabolic Rate in Insects. Springer Series in Experimental Entomology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8239-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8239-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8241-6

  • Online ISBN: 978-1-4613-8239-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics