Skip to main content

Methods for the Study of Transport and Control in Insect Hindgut

  • Chapter
Measurement of Ion Transport and Metabolic Rate in Insects

Part of the book series: Springer Series in Experimental Entomology ((SSEXP))

Abstract

The hindgut plays a central role in renal function and osmoregulation in most insects. This organ selectively reabsorbs solutes and water from “primary urine” which is secreted into the gut lumen by Malpighian tubules. The rectum of the desert locust Schistocerca gregaria has been studied in some detail in an attempt to understand the physiology of excretion and to learn more about insect ion transport mechanisms at the cellular level (Hanrahan 1982; Phillips 1981). Sodium, potassium, chloride, water, amino acids, phosphate, and acetate are all reabsorbed from the rectal lumen into the hemocoel by active mechanisms (reviewed by Phillips 1980, 1981). A variety of preparations have been used in these studies, each having particular strengths and weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen RJL (1940) The estimation of phosphorus. Biochem J 34: 858–865

    PubMed  CAS  Google Scholar 

  • Andrusiak EW (1974) Resorption of phosphate, calcium, and magnesium in the in vitro locust rectum. Master’s thesis, University of British Columbia, Vancouver, Canada

    Google Scholar 

  • Andrusiak EW, Phillips JE, Speight J (1980) Phosphate transport by locust rectum in vitro. Can J Zool 58: 1518–1523

    CAS  Google Scholar 

  • Anstee, JH, Bell DM, Fathpour H (1979) Fluid and cation secretion by the Malpighian tubules of Locusta. J Insect Physiol 25: 373–380

    CAS  Google Scholar 

  • Armstrong WMcD, Garcia-Diaz JF (1980) Ion selective microelectrodes: Theory and technique. Fed Proc 39: 2851–2859

    PubMed  CAS  Google Scholar 

  • Armstrong WM, Wojtkowski W, Bixenman WR (1977) A new solid-state micro-electrode for measuring intracellular chloride activities. Biochim Biophys Acta 465: 165–170

    PubMed  CAS  Google Scholar 

  • Balshin M, Phillips JE (1971) Active absorption of amino-acids in the rectum of the desert locust (Schistocerca gregaria). Nature (New Biol) 233: 53–55

    CAS  Google Scholar 

  • Bates RG (1973) Determination of pH; Theory and practice, 2nd ed. Wiley, New York

    Google Scholar 

  • Baumeister T, Meredith J, Julien W, Phillips J (1981) Acetate transport by locust rectum in vivo. J Insect Physiol 27: 195–201

    CAS  Google Scholar 

  • Baumgarten CM (1981) An improved liquid ion exchanger for chloride ion-selective microelectrodes. Am J Physiol 241: C258 - C263

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1966) Metabolic pathways of isolated Malpighian tubules of the blowfly functioning in an artificial medium. J Insect Physiol 12: 1523–1538

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1980) The role of cyclic nucleotides and calcium in the regulation of chloride transport. Ann NY Acad Sci 341: 156–169

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Schlue WR (1978) Ion-selective electrode studies on the effects of 5-hydroxytryptamine on the intracellular level of potassium in an insect salivary gland. J Exp Biol 72: 203–216

    PubMed  CAS  Google Scholar 

  • Bindslev N, Hansen AJ (1981) Mono-/bivalent ion selectivities obtained by the Nicolsky and the electrodiffusional regimes. In: Lubbers DW, Acker H, Buck RP, Eisenman G, Kessler M, Simon W (eds) Progress in enzyme and ion-selective electrodes. Springer, New York, pp 25–31

    Google Scholar 

  • Blankemeyer JT (1977) The route of active potassium ion transport in the mid-gut of Hyalophora cecropia and Manduca sexta. Doctoral dissertation, Temple University, Philadelphia

    Google Scholar 

  • Blankemeyer JT (1978) Demonstration of a pump-mediated efflux in the epithelial potassium active transport system of insect midgut. Biophys J 23: 313–318

    PubMed  CAS  Google Scholar 

  • Blankemeyer JT, Duncan RL (1980) The potassium activity in a polymorphic potassium active transporting epithelium, insect midgut. Fed Proc 39: 1711

    Google Scholar 

  • Blankemeyer JT, Harvey WR (1978) Identification of active cell in potassium transporting epithelium. J Exp Biol 77: 1–13

    PubMed  CAS  Google Scholar 

  • Bolton TB, Vaughan-Jones RD (1977) Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle. J Physiol (Lond) 270: 801–833

    CAS  Google Scholar 

  • Bonventre JV, Blouch K, Lechene C (1980) Liquid droplets and isolated cells. In: Hayat HA (ed) X-ray microanalysis in biology. University Park Press, Baltimore, pp 307–366

    Google Scholar 

  • Boulpaep EL, Giebisch G (1978) Electrophysiological measurements on the renal tubule. In: Martinez-Maldonado M (ed) Methods in pharmacology, Vol 4B. Plenum Press, New York, pp 165–193

    Google Scholar 

  • Boulpaep EL, Sackin H (1980) Electrical analysis of intraepithelial barriers. In: Bronner F, Kleinzeller A (eds) Current topics in membranes and transport, Vol 13. Academic Press, New York, pp 169–197

    Google Scholar 

  • Brodsky AB (1978) CRC handbook of radiation measurement and protection, Sect A, Vol I: Physical science and engineering data. CRC Press, West Palm Beach, Fla, pp 340–356

    Google Scholar 

  • Brown HM (1976) Intracellular Na+, K+ and Cl activities in Balanus photoreceptors. J Gen Physiol 68: 281–296

    PubMed  CAS  Google Scholar 

  • Brown KT, Flaming DG (1977) New microelectrode techniques for intracellular work in small cells. Neuroscience 2: 813–827

    Google Scholar 

  • Buck JB (1953) Physical properties and chemical composition of insect blood. In: Roeder KD (ed) Insect physiology. Wiley, New York, pp 147–190

    Google Scholar 

  • Burns DT, Coy JS, Hayes WP, Kent DM (1974) The indirect spectophotometric determination of sulphate with 2-aminoperimidine hydrochloride. Mikrochim Acta [Wien] 245–248

    Google Scholar 

  • Burton, RF (1975) Ringer solutions and physiological salines. Wright, Bristol, England

    Google Scholar 

  • Caflisch CR, Carter NW (1974) A micro PCO Anal Biochem 60: 252–257

    CAS  Google Scholar 

  • Caflisch CR, Pucacco LR, Carter NW (1978) Manufacture and utilization of antimony pH electrodes. Kidney Int 14: 126–141

    PubMed  CAS  Google Scholar 

  • Chamberlin M (1981) Metabolic studies on the locust rectum. Doctoral dissertation, University of British Columbia, Vancouver, Canada

    Google Scholar 

  • Chamberlin ME, Phillips JE (1980) Proline transport by locust Malpighian tubules. Am Zool 20: 945

    Google Scholar 

  • Chamberlin ME, Phillips JE (1982) Regulation of hemolymph amino acid levels and active secretion of proline by Malpighian tubules of locusts. Can J Zool 60: 2745–2752

    CAS  Google Scholar 

  • Chonko AM, Irish JM III, Welling DJ (1978) Microperfusion of isolated tubules. In: Martinez-Maldonado M (ed) Methods in pharmacology, Vol 4B. Plenum Press, New York, pp 221–258

    Google Scholar 

  • Clausen C, Lewis SA, Diamond JM (1979) Impedance analysis of a tight epithelium using a distributed resistance model. Biophys J 26: 291–318

    PubMed  CAS  Google Scholar 

  • Clements AN, May TE (1974) Studies on locust neuromuscular physiology in relation to glutamic acid. J Exp Biol 60: 673–705

    PubMed  CAS  Google Scholar 

  • Cooper PD, Deaton LE, Jungreis AM (1980) Chloride transport during resorption of molting fluid across the pharate pupal integument of tobacco horn-worms, Manduca sexta. J Gen Physiol 76: 13a - 14a

    Google Scholar 

  • Cornell JC, Jungreis AM (1981) Changes in K transport across the isolated integument of the tobacco hornworm Manduca sexta. Am Zool 21: 997

    Google Scholar 

  • Curci S, Frömter E (1979) Micropuncture of lateral intercellular spaces of Necturus gallbladder to determine space fluid K+ concentration. Nature 278: 355–357

    PubMed  CAS  Google Scholar 

  • Dantzler WH (1977) In vitro microperfusion. In: Gupta BL, Moreton RB, Oschman JL, Wall BJ (eds) Transport of ions and water in animals. Academic Press, New York, pp 57–82

    Google Scholar 

  • Delong J, Civan MM (1978) Dissociation of cellular K+ accumulation from net Na+ transport by toad urinary bladder. J Membr Biol 42: 19–43

    PubMed  CAS  Google Scholar 

  • DeSousa RC, Li JH, Essig A (1971) Flux ratios and isotope interaction in an ion exchange membrane. Nature 231: 44–45

    PubMed  CAS  Google Scholar 

  • Dow JAT (1981a) Ion and water transport in locust alimentary canal: Evidence from in vivo electrochemical gradients. J Exp Biol 93: 167–179

    Google Scholar 

  • Dow JAT (1981b) Localization and characterization of water uptake from the midgut of the locust, Schistocerca gregaria. J Exp Biol 93: 269–281

    CAS  Google Scholar 

  • Duchâteau G, Florkin M, Leclercq J (1953) Concentrations des bases fixes et types de composition de la base totale de l’hémolymphe des insectes. Arch Int Physiol 61: 518–549

    PubMed  Google Scholar 

  • Duffey ME, Turnheim K, Frizzell RA, Schultz SG (1978) Intracellular chloride activities in rabbit gallbladder: Direct evidence for the role of the sodium-gradient in energizing “uphill” chloride transport. J Membr Biol 42: 229–245

    PubMed  CAS  Google Scholar 

  • Durst RA (1974) Ion-selective electrode response in biologic fluids. In: Berman HJ, Hebert NC (eds) Ion-selective microelectrodes. Plenum Press, New York, pp 13–21

    Google Scholar 

  • Ehrlich BE, Diamond JM (1978) An ultramicro method for analysis of lithium and other biologically important cations. Biochem Biophys Acta 543: 264–268

    PubMed  CAS  Google Scholar 

  • Eisenberg RS, Johnson EA (1970) Three-dimensional electrical field problems in physiology. In: Butler JAV, Noble D (eds) Progress in biophysics and molecular biology, Vol 20. Pergamon Press, Toronto, pp 1–65

    Google Scholar 

  • Ernster L, Zetterström R, Lindberg 0 (1950) A method for the determination of tracer phosphate in biological material. Acta Chem Scand 4: 942–947

    CAS  Google Scholar 

  • Farmer J, Maddrell SHP, Spring JH (1981) Absorption of fluid by the midgut of Rhodnius. J Exp Biol 94: 301–316

    Google Scholar 

  • Flemström G, Öberg PA, Petterson H (1973) A new device for automatic measurement of short-circuit current across epithelial tissues. Ups J Med Sci 78: 19–21

    PubMed  Google Scholar 

  • Fletcher CR (1978) Improved flame photometry. J Exp Biol 77: 243–246

    CAS  Google Scholar 

  • Florkin M, Jeuniaux C (1974) Hemolymph: Composition. In: Rockstein M (ed) The physiology of insecta, 2nd ed. Vol V. Academic Press, New York, pp 255–307

    Google Scholar 

  • Fromm M, Schultz SG (1981) Some properties of KC1-filled microelectrodes: Correlation of potassium “leakage” with tip resistance. J Membr Biol 62: 239–244

    PubMed  CAS  Google Scholar 

  • Frömter E (1972) The route of passive ion movement through the epithelium of Necturus gallbladder. J Membr Biol 8: 259–301

    PubMed  Google Scholar 

  • Frömter E, Diamond J (1972) Route of passive ion permeation in epithelia. Nature (New Biol) 235: 9–13

    Google Scholar 

  • Frömter E, Simon M, Gebler B (1981) A double-channel ion-selective microelectrode with the possibility of fluid ejection for localization of the electrode tip in the tissue. In: Lubbers DW, Acker B, Buck RP, Eisenman G, Kessler M, Simon W (eds) Progress in enzyme and ion-selective electrodes. Springer, New York, pp 35–44

    Google Scholar 

  • Fujimoto M, Kubota T (1976) Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluid. Japn J Physiol 26: 631–650

    CAS  Google Scholar 

  • Fujimoto M, Naito K, Kubota T (1980) Electrochemical profile for ion transport across the membrane of proximal tubular cells. Membr Biochem 3: 67–97

    PubMed  CAS  Google Scholar 

  • Garcia-Diaz JF, Armstrong WMcD (1980) The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences in Necturus gallbladder. J Membr Biol 55: 213–222

    PubMed  CAS  Google Scholar 

  • Garland HO, Brown JA, Henderson IW (1978) X-ray analysis applied to the study of renal tubular fluid samples. In: Erasmus DA (ed) Electron probe microanalysis in biology. Chapman and Hall,.London

    Google Scholar 

  • Geddes LA (1972) Electrodes and the measurement of bioelectric events. Wiley, New York

    Google Scholar 

  • Giebisch G (ed) (1972) Renal micropuncture techniques: A symposium. Yale J Biol Med 45:187–456

    Google Scholar 

  • Giebisch G (1977) Micropuncture techniques. In: Gupta BL, Moreton RB, Oschman JL, Wall BJ (eds) Transport of ions and water. Academic Press, New York, pp 29–56

    Google Scholar 

  • Goh SL (1971) Mechanism of water and salt absorption in the in vitro locust rectum, Master’s thesis, University of British Columbia, Vancouver, Canada

    Google Scholar 

  • Goh S, Phillips JE (1978) Dependence of prolonged water absorption by in vitro locust rectum on ion transport. J Exp Biol 72: 25–41

    CAS  Google Scholar 

  • Gottschalk CW, Lassiter WE (1973) Micropuncture methodology. In: Orloff J, Berliner RW (eds) Handbook of physiology, Sect 8: Renal physiology. American Physiological Society, Washington, DC, pp 129–143

    Google Scholar 

  • Green R, Giebisch G (1974) Some problems with antimony microelectrodes. In: Berman HJ, Hebert NC (eds) Ion-selective microelectrodes. Plenum Press, New York, pp 43–53

    Google Scholar 

  • Greger R, Lang F, Knox FG, Lechene C (1978) Analysis of tubule fluid. In: Martinez-Maldonado M (ed) Methods in pharmacology, Vol 4B. Plenum Press, New York, pp 105–140

    Google Scholar 

  • Gupta BL, Hall TA (1979) Quantitative electron probe x-ray microanalysis of electrolyte elements within epithelial tissue compartments. Fed Proc 38: 144–153

    PubMed  CAS  Google Scholar 

  • Gupta BL, Hall TA (1981) The x-ray microanalysis of frozen-hydrated sections in scanning electron microscopy: An evaluation. Tissue Cell 13: 623–643

    PubMed  CAS  Google Scholar 

  • Gupta BL, Hall TA, Moreton RB (1977) Electron probe x-ray microanalysis. In: Gupta BL, Moreton RB, Oschman JL, Wall BJ (eds) Transport of ions and water in animals. Academic Press, New York, pp 83–168

    Google Scholar 

  • Gupta BL, Wall BJ, Oschman JL, Hall TA (1980) Direct microprobe evidence of local concentration gradients and recycling of electrolytes during fluid absorption in the rectal papillae of Calliphora. J Exp Biol 88: 21–47

    CAS  Google Scholar 

  • Hanrahan JW (1978) Hormonal regulation of chloride in locusts. Physiologist 21: 50

    Google Scholar 

  • Hanrahan JW (1982) Cellular mechanism and regulation of KC1 transport across an insect epithelium. Doctoral dissertation, University of British Columbia, Vancouver, Canada

    Google Scholar 

  • Hanrahan JW, Phillips JE (1980a) Na+-independent Cl transport in an insect. Fed Proc 39: 285

    Google Scholar 

  • Hanrahan JW, Phillips JE (1980b) Characterization of locust Cl-transport. Am Zool 20: 938

    Google Scholar 

  • Hanrahan JW, Phillips JE (1982) Mechanism and control of salt absorption in locust rectum. Am J Physiol 244: R131 - R142

    Google Scholar 

  • Hanrahan JW, Phillips JE, Steeves JD (1982) Electrophysiology of Cl transport across insect rectum: Effects of cAMP. Fed Proc 41: 1496

    Google Scholar 

  • Harvey WR, Nedergaard S (1964) Sodium-independent active transport of potassium in the isolated midgut of the Cecrepia silkworm. Proc Natl Acad Sci USA 51: 757–765

    PubMed  CAS  Google Scholar 

  • Helman SI, Miller DA (1973) Edge damage effect on electrical measurements of frog skin. Am J Physiol 225: 972–977

    PubMed  CAS  Google Scholar 

  • Helman SI, Miller DA (1974) Edge damage effect on measurements of urea and sodium flux in frog skin. Am J Physiol 226: 1198–1203

    PubMed  CAS  Google Scholar 

  • Herrera L, Jordana R, Ponz F (1976) Chloride-dependent transmural potential in the rectal wall of Schistocerca gregaria. J Insect Physiol 22: 291–297

    CAS  Google Scholar 

  • Herrera L, Jordana R, Ponz F (1977) Effect of inhibitors on chloride-dependent transmural potential in the rectal wall of Schistocerca gregaria. J Insect Physiol 23: 677–682

    CAS  Google Scholar 

  • Hodge C (1939) The anatomy and histology of the alimentary tract of Locusta migratoria L. (Orthoptera: Acrididae). J Morphol 64: 375–400

    Google Scholar 

  • Hodgkin AL, Horowicz P (1959) The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol (Lond) 148: 127–160

    CAS  Google Scholar 

  • Holder RED, Sattelle DB (1972) A multiway non-return value for use in physiological experiments. J Physiol (Lond) 226: 2P - 3 P

    CAS  Google Scholar 

  • Isaacson LC, Douglas RJ, Pepler J (1971) Automatic measurement of voltage and short-circuit current across amphibian epithelia. J Appl Physiol 31: 298–299

    PubMed  CAS  Google Scholar 

  • Jacquez JA (1980) Tracers in the study of membrane processes. In: Andreoli TE, Hoffman JF, Fanestil DD (eds) Membrane physiology. Plenum Press, New York, pp 147–164

    Google Scholar 

  • Jungries AM, Harvey WR (1975) Role of active potassium transport by integumentary epithelium in secretion of larval-pupal moulting fluid during silk moth development. J Exp Biol 62: 357–366

    Google Scholar 

  • Karlmark B (1973) The determination of titratable acid and ammonium ions in picomole amounts. Anal Biochem 52: 69–82

    PubMed  CAS  Google Scholar 

  • Karlmark B, Sohtell M (1973) The determination of bicarbonate in nanoliter samples. Anal Biochem 53: 1–11

    PubMed  CAS  Google Scholar 

  • Karlmark B, Sohtell M, Ulfendahl HR (1971) A pH-glass electrode for nanolitre biological samples. Acta Soc Med Ups 76: 58–62

    PubMed  CAS  Google Scholar 

  • Karlmark B, Jaeger P, Fein H, Giebisch G (1982) Coulometric acid-base titration in nanoliter samples with glass and antimony electrodes. Am J Physiol 242: F49 - F99

    Google Scholar 

  • Khuri RN, Agulian SK (1981) Intracellular electro-chemical studies of single renal tubule cells and muscle fibers. In: Lubbers DW, Acker B, Buck RP, Eisenman G, Kessler M, Simon W (eds) Progress in enzyme and ion-selective electrodes. Springer, New York, pp 195–205

    Google Scholar 

  • Khuri RN, Agulian SK, Oelert H, Harik RI (1967) A single unit pH glass ultra-micro electrode. Pfluegers Arch 294: 291–294

    CAS  Google Scholar 

  • Khuri RN, Agulian SK, Kalloghlian A (1972) Intracellular potassium in cells of the distal tubule. Pfluegers Arch 335: 297–308

    CAS  Google Scholar 

  • Khuri RN, Bogharian K, Agulian SK (1974) Intracellular bicarbonate in single skeletal muscle fibres. Pfluegers Arch 349: 285–294

    CAS  Google Scholar 

  • King EJ (1932) The colorimetric determination of phosphorus. Biochem J 26: 292–297

    PubMed  CAS  Google Scholar 

  • Kotera K, Satake N, Honda M, Fujimoto M (1979) The measurement of intracellular sodium activities in the bullfrog by means of a double-barreled sodium liquid ion-exchange microelectrode. Membr Biochem 2: 232–338

    Google Scholar 

  • Kottra G, Frömter E (1983) Functional properties of the paracellular pathway in some leaky epithelia. J Exp Biol in press

    Google Scholar 

  • Kuppers J, Thurm U (1980) Water transport by electroosmosis. In: Locke M, Smith DS (eds) Insect biology in the Future, “VBW 80.” Academic Press, New York, pp. 125–144

    Google Scholar 

  • LaForce RC (1967) Device to measure the voltage-current relations in biological membranes. Rev Sci Instrum 38: 1225–1228

    CAS  Google Scholar 

  • Lane NJ (1979) Freeze-fracture and tracer studies on the intercellular junction of insect rectal tissues. Tissue Cell 11: 481–506

    PubMed  CAS  Google Scholar 

  • Leader JP, Green LB (1978) Active transport of chloride and sodium by the rectal chamber of the larvae of the dragonfly, Uropetala carovei. J Insect Physiol 24: 685–692

    CAS  Google Scholar 

  • Lechene C, Warner RR (1979) Electron probe analysis of liquid droplets. In: Lechene C, Warner RR (eds) Microbeam analysis in biology. Academic Press, New York, pp 279–298

    Google Scholar 

  • Lee CO, Taylor A, Windhager EE (1980) Cytosolic calcium ion activity in epithelial cells of Necturus kidney. Nature 287: 859–861

    PubMed  CAS  Google Scholar 

  • Lee RM (1961) The variation of blood volume with age in the desert locust (Schistocerca gregaria). J Insect Physiol 6: 36–51

    CAS  Google Scholar 

  • Lettau J, Foster WA, Harker JE, Treherne JE (1977) Diel changes in potassium activity in the hemolymph of the cockroach Leucophaea maderae. J Exp Biol 71: 171–186

    CAS  Google Scholar 

  • Levenbook L (1950) The composition of horse bot fly (Gastrophilus intestinalis) larva blood. Biochem J 47: 336–346

    PubMed  CAS  Google Scholar 

  • Levine DZ (1972) Measurement of tubular fluid bicarbonate concentration by the cuvette-type glass micro pH electrode. Yale J Biol Med 45: 368–372

    PubMed  CAS  Google Scholar 

  • Lewis SA, Diamond JM (1976) Na transport by rabbit urinary bladder, a tight epithelium. J Membr Biol 28: 1–40

    PubMed  CAS  Google Scholar 

  • Lewis SA, Wills NK (1980) Resistive artifacts in liquid-ion exchanger microelectrode estimates of Na+ activity in epithelial cells. Biophys J 31: 127–138

    PubMed  CAS  Google Scholar 

  • Lewis SA, Eaton DC, Diamond JM (1976) The mechanism of Na+ transport by rabbit urinary bladder. J Membr Biol 28: 41–70

    PubMed  CAS  Google Scholar 

  • Lewis SA, Wills NK, Eaton DC (1978) Basolateral membrane potential of a tight epithelium: Ionic diffusion and electrogenic pumps. J Membr Biol 41: 117–148

    PubMed  CAS  Google Scholar 

  • Li JH, DeSousa RC, Essig A (1974) Kinetics of tracer flows and isotope interaction in an ion exchange membrane. J Membr Biol 93: 104

    Google Scholar 

  • Lindemann B (1975) Impalement artifacts in microelectrode recordings of epithelial membrane potentials. Biophys J 15: 1161–1164

    PubMed  CAS  Google Scholar 

  • Little C (1974) A method for determining total carbon dioxide in nanolitre volumes of liquid. J Exp Biol 61: 667–675

    CAS  Google Scholar 

  • Little C (1977) Microsample analysis. In: Gupta BL, Moreton RB, Oschman JL, Wall BJ (eds) Transport of ions and water in animals. Academic Press, New York, pp 15–28

    Google Scholar 

  • Loewenstein WR (1981) Junctional intercellular communication: The cell-to-cell membrane channel. Physiol Rev 61: 829–913

    PubMed  CAS  Google Scholar 

  • Loewenstein WR, Socolar SJ, Higashino S, Kanno Y, Davidson N (1965) Intercellular communication: Renal, urinary bladder, sensory, and salivary gland cells. Science 149: 295–298

    PubMed  CAS  Google Scholar 

  • Maddrell SHP (1971) The mechanisms of insect excretory systems. In: Beament JWL, Treherne JE, Wigglesworth VB (eds) Advances in insect physiology, Vol 8. Academic Press, New York, pp 199–331

    Google Scholar 

  • Maddrell SHP (1977) Insect malpighian tubules. In: Gupta BL, Moreton RB, Oschman JL, Wall BJ (eds) Transport of ions and water in animals. Academic Press, New York, pp 57–82

    Google Scholar 

  • Maddrell SHP (1980) Bioassay of diuretic hormones in Rhodnius. In: Miller TA (ed) Neurohormonal techniques in insects. Springer, New York, pp 81–90

    Google Scholar 

  • Maddrell SHP, Gardiner BOC (1980) The permeability of the cuticular lining of the insect alimentary canal. J Exp Biol 85: 227–237

    CAS  Google Scholar 

  • Maddrell SHP, Klunsuwan S (1973) Fluid secretion by in vitro preparations of the Malpighian tubules of the desert locust, Schistocerca gregaria. J Insect Physiol 19: 1369–1376

    CAS  Google Scholar 

  • Maffly RH (1968) Conductometric method for measuring micromolar quantities of carbon dioxide. Anal Biochem 23: 252–262

    PubMed  CAS  Google Scholar 

  • Malnic G, Vieira FL (1972) Antimony microelectrode in kidney micropuncture. Yale J Biol Med 45: 356

    PubMed  CAS  Google Scholar 

  • Miller TA (ed) (1979) Neurohormonal techniques in insects. Springer, New York

    Google Scholar 

  • Moffett DF (1979) Potassium activity of single insect midgut cells. Am Zool 19: 996

    Google Scholar 

  • Moffett DF, Hudson RL, Moffett SB, Ridgway RL (1982) Intracellular K+ activities and cell membrane potentials in a K+ -transporting epithelium, the midgut of tobacco hornworm (Manduca sexta). J Membrane Biol 70: 59–68

    CAS  Google Scholar 

  • Moody GJ, Thomas JDR (1971) Selective ion sensitive electrodes. Merrow, Watford, England

    Google Scholar 

  • Mordue W (1969) Hormonal control of Malpighian tube and rectal function in the desert locust, Schistocerca gregaria. J Insect Physiol 15: 273–285

    PubMed  CAS  Google Scholar 

  • Mordue W (1972) Hydromineral regulation in animals. Part I. Hormones and excretion in locusts. Gen Comp Endocrinol (Suppl) 3: 289–298

    Google Scholar 

  • Moreton RB (1981) Electron-probe x-ray microanalysis: Techniques and recent application in biology. Biol Rev 56: 409–461

    PubMed  CAS  Google Scholar 

  • Neild TO, Thomas RC (1973) New design for a chloride-sensitive microelectrode. J Physiol (Lond) 231: 7P - 8 P

    CAS  Google Scholar 

  • Nelson DJ, Ehrenfeld J, Lindemann B (1978) Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3M KC1. J Membr Biol (Special Issue) 40: 91–119

    CAS  Google Scholar 

  • O’Doherty J, Garcia-Diaz JF, Armstrong WMcD (1979) Sodium-selective liquid ion-exchanger microelectrodes for intracellular measurements. Science 203: 1349–1351

    PubMed  Google Scholar 

  • Ogden TE, Citron MC, Pierantoni R (1978) The jet stream microbeveler: An inexpensive way to bevel ultrafine glass micropipettes. Science 201: 469–470

    PubMed  CAS  Google Scholar 

  • Olver FWJ (1967) Bessel functions of integer order. In: Abramowitz M, Stegun JA (eds) Handbook of mathematical functions. National Bureau of Standards, Washington, DC, pp 355–422

    Google Scholar 

  • Palmer LG, Civan MM (1977) Distribution of Nat, K+ and Cl-between nucleus and cytoplasm in Chironomus salivary gland cells. J Membr Biol 33: 41–61

    PubMed  CAS  Google Scholar 

  • Paulson S (1953) Biophysical and physiological investigations on cartilage and other mesenchymal tissues. IV. A semimicro method for conductometric determination of sulfur. Acta Chem Scand 7: 325–328

    CAS  Google Scholar 

  • Peng CT (1977) Sample preparation in liquid scintillation counting. Amersham Corp, Arlington Heights, Ill

    Google Scholar 

  • Peng CT, Horrocks DL, Alpen EL (eds) (1980) Liquid scintillation counting: Recent applications and developments, Vol 1: Physical aspects. Academic Press, New York

    Google Scholar 

  • Phillips JE (1964a) Rectal absorption in the desert locust, Schistocerca gregaria Forskdl. I. Water. J Exp Biol 41: 15–38

    CAS  Google Scholar 

  • Phillips JE (1964b) Rectal absorption in the desert locust, Schistocerca gregaria Forskâl. II. Sodium, potassium and chloride. J Exp Biol 41: 39–67

    PubMed  CAS  Google Scholar 

  • Phillips JE (1964c) Rectal absorption in the desert locust, Schistocerca gregaria Forskâl. III. The nature of the excretory process. J Exp Biol 41: 67–80

    Google Scholar 

  • Phillips JE (1970) Apparent transport of water by insect excretory systems. Am Zool 10: 413–436

    PubMed  CAS  Google Scholar 

  • Phillips JE (1980) Epithelial transport and control in recta of terrestrial insects. In: Locke M, Smith DS (eds) Insect biology in the future. Academic Press, New York, pp 145–177

    Google Scholar 

  • Phillips J (1981) Comparative physiology of insect renal function. Am J Physiol 241: R241 - R257

    PubMed  CAS  Google Scholar 

  • Phillips JE, Beaumont C (1971) Symmetry and non-linearity of osmotic flow across rectal cuticle of the desert locust. J Exp Biol 54: 317–328

    PubMed  CAS  Google Scholar 

  • Phillips JE, Dockrill AA (1968) Molecular sieving of hydrophilic molecules by the rectal intima of the desert locust (Schistocerca gregaria). J Exp Biol 48: 521–532

    PubMed  CAS  Google Scholar 

  • Phillips JE, Mordue W, Meredith J, Spring J (1980) Purification and characteristics of the chloride transport stimulating factor from the locust corpora cardiaca: A new peptide. Can J Zool 58: 1851–1860

    CAS  Google Scholar 

  • Phillips JE, Spring J, Hanrahan J, Mordue W, Meredith J (1981) Hormonal control of salt reabsorption by the excretory system of an insect: Isolation of a new protein. In: Farner DS, Lederis K (eds) Neurosecretion: Molecules, cells, systems. Plenum Press, New York, pp 373–382

    Google Scholar 

  • Phillips JE, Meredith J, Spring J, Chamberlin M (1982) Control of ion reabsorption in locust rectum: Implications for fluid transport. J Exp Zool in press

    Google Scholar 

  • Pichon Y (1970) Ionic content of haemolymph in the cockroach, Periplaneta americana. A critical analysis. J Exp Biol 53: 195–209

    PubMed  CAS  Google Scholar 

  • Prager DJ, Bowman RL, Vurek GG (1965) Constant volume, self-filling nanolitre pipette: Construction and calibration. Science 147: 606–608

    PubMed  CAS  Google Scholar 

  • Prusch RD (1974) Active ion transport in the larval hindgut of Sarcophaga bullata (Diptera: Sarcophagidae). J Exp Biol 61: 95–109

    PubMed  CAS  Google Scholar 

  • Prusch RD (1976) Unidirectional ion movements in the hindgut of larval Sarcophaga bullata (Diptera: Sarcophagidae). J Exp Biol 64: 89–100

    PubMed  CAS  Google Scholar 

  • Puschett JB, Zurbach PE (1974) Re-evaluation of microelectrode methodology for the in vitro determination of pH and bicarbonate concentration. Kidney Int. 6: 81–91

    PubMed  CAS  Google Scholar 

  • Quehenberger P (1977) The influence of carbon dioxide, bicarbonate and other buffers on the potential of antimony microelectrodes. Pfluegers Arch 368: 141–147

    CAS  Google Scholar 

  • Quinton PM (1976) Construction of pico-nanoliter self-filling volumetric pipettes. J Appl Physiol 40: 260–262

    PubMed  CAS  Google Scholar 

  • Quinton PM (1978) Techniques for microdrop analysis of fluids (sweat, saliva, urine) with an energy-dispersive x-ray spectrometer on a scanning electron microscope. Am J Physiol 234: F255 - F259

    PubMed  CAS  Google Scholar 

  • Ramsay JA (1954) Active transport of water by the Malpighian tubules of the stick insect, Dixippus morosus (Orthoptera, Phasmidiae). J Exp Biol 31: 104–113

    CAS  Google Scholar 

  • Ramsay JA, Brown RHJ, Croghan PC (1955) Electrometric titration of chloride in small volume. J Exp Biol 32: 822–829

    CAS  Google Scholar 

  • Rehm WS (1975) Ion transport and short-circuit technique. In: Bronner F, Kleinzeller A (eds) Current topics in membrane and transport, Vol 7. Academic Press, New York, pp 217–270

    Google Scholar 

  • Reuss L, Finn AL (1974) Passive electrical properties of toad urinary bladder epithelium: Intercellular electrical coupling and transepithelial cellular and shunt conductances. J Gen Physiol 64: 1–25

    PubMed  CAS  Google Scholar 

  • Reuss L, Finn AL (1975) Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions. J Membr Biol 25: 115–139

    PubMed  CAS  Google Scholar 

  • Reuss L, Grady TP (1979) Effects of external sodium and cell membrane potential on intracellular chloride activity in gallbladder epithelium. J Membr Biol 51: 15–31

    PubMed  CAS  Google Scholar 

  • Reuss L, Weinman SA (1979) Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium. J Membr Biol 49: 345–362

    PubMed  CAS  Google Scholar 

  • Rick R, Horster M, Dorge A, Thurau K (1977) Determination of electrolytes in small biological fluid samples using energy dispersive x-ray microanalysis. Pfluegers Arch 369: 95–98

    CAS  Google Scholar 

  • Riegel JA (1970) In vitro studies of fluid and ion movements due to the swelling of formed bodies. Comp Biochem Physiol 35:843–856

    CAS  Google Scholar 

  • Roach DK (1963) Analysis of the haemolymph of Arion ater L. (Gastropoda: Pulmonata). J Exp Biol 40: 613–623

    CAS  Google Scholar 

  • Robinson RA, Stokes RH (1965) Electrolyte solutions, 3rd ed. Butterworths, London

    Google Scholar 

  • Roinel N (1975) Electron microprobe quantitative analysis of lyophilised 10−10 1 volume samples. J Microsc Bull Cell 22: 261–268

    CAS  Google Scholar 

  • Rothe CF, Quay JF, Armstrong WM (1969) Measurement of epithelial electrical characteristics with an automatic voltage clamp device with compensation for solution resistance. IEEE Trans Biomed Eng 16: 160–169

    PubMed  CAS  Google Scholar 

  • Saunders JH, Brown HM (1977) Liquid and solid-state Cl--sensitive microelectrodes: Characteristics and application to intracellular Cl-activity in Balanus photoreceptors. J Gen Physiol 70: 507–530

    PubMed  CAS  Google Scholar 

  • Schoen HF, Candia OA (1978) An inexpensive, high output voltage, voltage clamp for epithelial membranes. Am J Physiol 235: C69 - C72

    PubMed  CAS  Google Scholar 

  • Shaw, TI (1955) Potassium movements in washed erythrocytes. J Physiol 129: 464–475

    PubMed  CAS  Google Scholar 

  • Shiba H (1971) Heaviside’s “Bessel cable” as an electric model for flat simple epithelial cells with low resistive junctional membranes. J Theor Biol 30: 59–68

    PubMed  CAS  Google Scholar 

  • Smith PG (1978) A device for automatic measurement of short-circuit current in epithelia. Comp Biochem Physiol 61A: 221–222

    Google Scholar 

  • Socolar SJ, Politoff AL (1971) Uncoupling cell junctions of a glandular epithelium by depolarizing current. Science 172: 492–494

    PubMed  CAS  Google Scholar 

  • Sohtell M, Karlmark B (1976) In vivo micropuncture PCO measurements. Pflugers Arch 363:179–189

    PubMed  CAS  Google Scholar 

  • Speight J (1967) Acidification of rectal fluid in the locust Schistocerca gregaria. Master’s thesis, University of British Columbia, Vancouver, Canada

    Google Scholar 

  • Spenney JG, Shoemaker RL, Sachs G (1974) Microelectrode studies of fundic gastric mucosa: Cellular coupling and shunt conductance. J Membr Biol 19: 105–128

    PubMed  CAS  Google Scholar 

  • Spring JH, Phillips JE (1980a) Studies on locust rectum: I Stimulants of electrogenic ion transport. J Exp Biol 86: 211–223

    CAS  Google Scholar 

  • Spring JH, Phillips JE (1980b) Studies on locust rectum: II Identification of specific ion transport processes regulated by corpora cardiacum and cyclic-AMP. J Exp Biol 86: 225–236

    CAS  Google Scholar 

  • Spring JH, Phillips JE (1980c) Studies on locust rectum: III Stimulation of electrogenic chloride transport by hemolymph. Can J Zool 58: 1933–1939

    CAS  Google Scholar 

  • Spring JH, Hanrahan J, Phillips JE (1978) Hormonal control of chloride transport across locust rectum. Can J Zool 56: 1879–1882

    CAS  Google Scholar 

  • Spring KR, Kimura G (1978) Chloride reabsorption by renal proximal tubules of Necturus. J Membr Biol 38: 233–254

    PubMed  CAS  Google Scholar 

  • Stewart WW (1978) Functional connections between cells as revealed by dyecoupling with a highly fluorescent naphtholamide tracer. Cell 14: 741–759

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Miller TA (eds) (1980) Neuroanatomical techniques: Insect nervous systems. Springer, New York

    Google Scholar 

  • Stobbart RH, Shaw J (1974) Salt and water balance: Excretion. In: Rockstein M (ed) The physiology of insecta, 2nd ed, Vol 5, Academic Press, New York, pp 361–446

    Google Scholar 

  • Sutcliffe DW (1962) The composition of hemolymph in aquatic insects. J Exp Biol 39: 325–343

    CAS  Google Scholar 

  • Swaroop A (1973) Micromethod for the determination of urinary inorganic sulfate. Clin Chim Acta 46: 333–336

    PubMed  CAS  Google Scholar 

  • Thomas RC (1978) Ion-sensitive intracellular microelectrodes: How to make and use them. Academic Press, New York

    Google Scholar 

  • Treherne JE, Buchan PB, Bennett RR (1975) Sodium activity of insect blood: Physiological significance and relevance to the design of physiological saline. J Exp Biol 62: 721–732

    PubMed  CAS  Google Scholar 

  • Turin L, Warner A (1977) Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature 270: 56–57

    PubMed  CAS  Google Scholar 

  • Uhlich E, Baldmus CA, Ullrich KJ (1968) Behaviour of CO2-pressure and bicarbonate in the countercurrent system of renal medulla. Pflugers Arch 303: 31–48

    PubMed  CAS  Google Scholar 

  • Ullrich KJ, Frömter E, Baumann K (1969) Micropuncture and microanalysis in kidney physiology. In: Passow H, Stämpfli R (eds) Laboratory techniques in membrane biophysics. Springer, New York, pp 106–129

    Google Scholar 

  • Ussing HH (1948) The active ion transport through the isolated frog skin in the light of tracer studies. Acta Physiol Scand 17: 1–37

    Google Scholar 

  • Ussing HH (1949) The distinction by means of tracers between active transport and diffusion. Acta Physiol Scand 19: 43–56

    CAS  Google Scholar 

  • Ussing HH, Zerahn K (1951) Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 23: 110–127

    PubMed  CAS  Google Scholar 

  • Vurek GG, Warnock DG, Corsey R (1975) Measurement of picomole amounts of carbon dioxide by calorimetry. Anal Chem 47: 765–767

    PubMed  CAS  Google Scholar 

  • Walker JL (1971) Ionic specific liquid ion exchanger microelectrodes. Anal Chem 43: 89A - 93A

    CAS  Google Scholar 

  • Wall BJ, Oschman JL (1970) Water and solute uptake by rectal pads of Periplaneta americana. Am J Physiol 218: 1208–1215

    PubMed  CAS  Google Scholar 

  • Wall BJ, Oschman JL (1975) Structure and function of the rectum in insect excretion. Fortschr Zool 23: 192–222

    Google Scholar 

  • Walser M (1970) Role of edge damage in sodium permeability of toad bladder and a means of avoiding it. Am J Physiol 219: 252–255

    PubMed  CAS  Google Scholar 

  • Wang CH, Willis DL, Loveland WD (1975) Radiotracer methodology in the biological, environmental, and physical sciences. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Watlington CO, Smith TC, Huf EG (1970) Direct electrical currents in metabolizing epithelial membranes. Exp Physiol Biochem 3: 49–159

    CAS  Google Scholar 

  • Weidler DJ, Sieck GC (1977) A study of ion binding in the hemolymph of Periplaneta americana. Comp Biochem Physiol 56A: 11–14

    CAS  Google Scholar 

  • White JF (1977) Activity of chloride in absorptive cells of Amphiuma small intestine. Am J Physiol 232: E553 - E559

    PubMed  CAS  Google Scholar 

  • Williams D (1976) Ion transport and short-circuit current in the rectum of the desert locust Schistocerca gregaria. Master’s thesis, University of British Columbia, Vancouver, Canada

    Google Scholar 

  • Williams D, Phillips J, Prince W, Meredith J (1978) The source of short-circuit current across locust rectum. J Exp Biol 77: 107–122

    CAS  Google Scholar 

  • Wills NK, Lewis SA, Eaton DC (1979) Active and passive properties of rabbit descending colon: A microelectrode and nystatin study. J Membr Biol 45: 81–108

    PubMed  CAS  Google Scholar 

  • Windhager EE (1968) Micropuncture techniques and nephron function. Butter-worths, London

    Google Scholar 

  • Wood JL (1972) Some aspects of active potassium transport by the midgut of the silkworm, Antheraea pernyi. Doctoral dissertation, University of Cambridge, Cambridge, England

    Google Scholar 

  • Wood JL, Harvey WR (1975) Active transport of potassium by the Cecropia midgut; Tracer kinetic theory and transport pool size. J Exp Biol 63: 301–311

    PubMed  CAS  Google Scholar 

  • Wood JL, Harvey WR (1976) Active transport of calcium across the isolated midgut of Hyalophora cecropia. J Exp Biol 65: 347–360

    PubMed  CAS  Google Scholar 

  • Wood JL, Moreton RB (1978) Refinements in the short-circuit technique, and its application to active potassium transport across the Cecropia midgut. J Exp Biol 77: 123–140

    PubMed  CAS  Google Scholar 

  • Wright P (1967) A simple device for electronic measurement of a short circuit current. J Physiol (Lond) 178: 1P - 2 P

    Google Scholar 

  • Wyatt GR (1961) The biochemistry of insect haemolymph. Ann Rev Entomol 6: 75–102

    CAS  Google Scholar 

  • Zerahn K (1980) Competition between potassium and rubidium ions for penetration of the midgut of Hyalophora cecropia larvae. J Exp Biol 86: 341–344

    CAS  Google Scholar 

  • Zeuthen T (1980) How to make and use double-barreled ion-selective microelectrodes. In: Bronner F, Kleinzeller A (eds) Current topics in membrane and transport, Vol 13. Academic Press, New York, pp 31–47

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Hanrahan, J.W., Meredith, J., Phillips, J.E., Brandys, D. (1984). Methods for the Study of Transport and Control in Insect Hindgut. In: Bradley, T.J., Miller, T.A. (eds) Measurement of Ion Transport and Metabolic Rate in Insects. Springer Series in Experimental Entomology. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8239-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8239-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8241-6

  • Online ISBN: 978-1-4613-8239-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics