Skip to main content

New Enzyme Synthesis as a Long-Term Adaptation to Increased Transmitter Utilization

  • Chapter
New Concepts in Neurotransmitter Regulation

Abstract

Adequate regulatory function of the peripheral autonomous nervous system depends on both prompt liberation and prompt inactivation of the neurohumoral transmitter substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames, B.N. and Martin, R.G. 1964. Biochemical aspects of genetics: the operon. Ann. Rev. Biochem. 33: 235.

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar, R.K. and Moore, K.E. 1971. Effects of electrical stimulation, α-methyltyrosine and desmethylimipramine on the norepinephrine contents of neuronal cell bodies and terminals. J. Pharmacol. Exp. Ther. 178: 450.

    PubMed  CAS  Google Scholar 

  • Black, I.B., Hendry, I., and Iversen, L.L. 1971. Differences in the regulation of tyrosine hydroxylase and DOPA decarboxylase in sympathetic ganglia and adrenals. Nature New Biol. 231: 27.

    Article  PubMed  CAS  Google Scholar 

  • Costa, E. 1970. Simple neuronal models to estimate turnover rate of noradrenergic transmitter in vivo. Adv. Biochem. Psychopharmacol. 2: 169.

    PubMed  CAS  Google Scholar 

  • Cragg, B.G. 1970. What is the signal for chromatolysis? Brain Res. 23: 1.

    Article  PubMed  CAS  Google Scholar 

  • Dahlström, A. 1967. The interneuronal distribution of noradrenaline and the transport and life-span of amine storage granules in the sympathetic adrenergic neuron. Naunyn-Schmiedebergs Arch. Exp. Path. Pharmakol. 257: 93.

    Article  Google Scholar 

  • Dahlstm, A. and Häggendal, J. 1966. Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system. Acta physiol. Scand. 67: 278.

    Article  Google Scholar 

  • Dairman, W. and Udenfriend, S. 1970. Increased conversion of tyrosine to catecholamines in the intact rat following elevation of tissue tyrosine hydroxylase levels by administered phenoxybenzamine. Mol. Pharmacol. 6: 350.

    PubMed  CAS  Google Scholar 

  • Davison, P.F. 1970. Axoplasmic transport: Physical and chemical aspects. In: The Neurosciences. New York: The Rockefller Univ. Press, pp. 851.

    Google Scholar 

  • Fischer, J.E. and Snyder, S. 1965. Disposition of norepinephrine-H3 in sympathetic ganglia. J. Pharmacol. Exp. Ther. 150: 190.

    PubMed  CAS  Google Scholar 

  • Geffen, L.B. and Livett, B.G. 1971. Synaptic vesicles in sympathetic neurons. Physiol. Rev. 51: 98.

    PubMed  CAS  Google Scholar 

  • Geffen, L.B. and Rush, R.A. 1968. Transport of noradrenaline in sympathetic nerves and the effect of nerve impulses on its contribution to transmitter stores. Neurochem. 15: 925.

    Article  CAS  Google Scholar 

  • Gewirtz, G.P. and Kopin, I.J. 1970. Release of dopamine hydroxylase with norepinephrine during cat splenic nerve stimulation. Nature 227: 406.

    Article  PubMed  CAS  Google Scholar 

  • Gisiger, V. and Gaide-Huguenin, A.-C. 1969. Effect of preganglionic stimulation upon RNA synthesis in the isolated sympathetic ganglion of the rat. Progr. Brain Res. 31: 125.

    Article  CAS  Google Scholar 

  • Haefely, W., Hürlimann, A. and Thoenen, H. 1965. Relation between the rate of stimulation and the quantity of noradrenaline liberated from sympathetic nerve endings in the isolated perfused spleen of the cat. J. Physiol. 181: 48.

    PubMed  CAS  Google Scholar 

  • HÃ¥kanson, R. and Owman, C. 1966. Pineal DOPA decarboxylase and monoamine oxydase activities as related to the monoamine stores. J. Neurochem. 13: 597.

    Article  PubMed  Google Scholar 

  • Iversen, L.L. 1967. The Uptake and Storage of Noradrenaline in Sympathetic Nerves. London: Cambridge Univ. Press.

    Google Scholar 

  • Karlsson, J.O. and Sjöstrand, J. 1971. Characterization of the fast and slow components of axonal transport in retinal ganglion cells. J, Neurobiol. 2: 135.

    Article  Google Scholar 

  • Koelle, G.B. 1970. Neurohumoral transmission and the autonomic nervous system. In: The Pharmacological Basis of Therapeutics. (Eds., Goodman, L.S. and Gilman, A.) 4th Ed. London: The Maillan Company, p. 402.

    Google Scholar 

  • Kuczenski, R.T. and Mandell, A.J. 1972. Regulatory properties of soluble and particulate rat brain tyrosine hydroxylase. J. Biol. Chem. 247: 3114.

    PubMed  CAS  Google Scholar 

  • Kvetnanský, R., Gewirtz, G.P., Weise, V.K. and Kopin, I.J. 1970. Effect of hypophysectomy on immobilization-induced elevation of tyrosine hydroxylase and phenylethanolamine-N-methyl transferase in the rat adrenal. Endocrinology 87: 1323.

    Article  PubMed  Google Scholar 

  • Laduron, P. and Belpaire, F. 1968. Transport of noradrenaline and dopamine β-hydroxylase in sympathetic nerves. Life Sci. 7: 1.

    Article  PubMed  CAS  Google Scholar 

  • Larrabee, M.G. 1969. Metabolic effects of nerve impulses and nerve-growth factor in sympathetic ganglia. Progr. Brain Res. 31: 95.

    Article  CAS  Google Scholar 

  • Levitt, M., Gibb, J.W., Daly, J.W., Lipton, M. and Udenfriend, S. 1967. A new class of tyrosine hydroxylase inhibitors and a simple assay of inhibition in vivo. Biochem. Pharm. 16: 1313.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, M., Spector, S., Sjoerdsma, A. and Udenfriend, S. 1965. Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart. J. Pharmacol. Exp. Ther. 148: 1.

    PubMed  CAS  Google Scholar 

  • Livett, B.G., Geffen, L.B. and Rush, R.A. 1969. Immunohistochemical evidence for the transport of dopamine β-hydroxylase and a catecholamine binding protein in sympathetic nerves. Biochem. Pharmacol. 18: 923.

    Article  PubMed  CAS  Google Scholar 

  • Molinoff, P.B. and Axelrod, J. 1971. Biochemistry of catecholamines. Ann. Rev. Biochem. 40: 465.

    Article  PubMed  CAS  Google Scholar 

  • Molinoff, P.B., Brimijoin, S., Weinshilboum, R. and Axelrod, J. 1970. Neurally mediated increase in dopamine β-hydroxylase activity. Proc. Nat. Acad. Sci. USA 66:453.

    Article  PubMed  CAS  Google Scholar 

  • Molinoff, P.B., Weinshilboum, R. and Axelrod, J. 1971. A sensitive enzymatic assay for dopamine 6-hydroxylase. J. Pharmacol. Exp. Ther. 178: 425.

    PubMed  CAS  Google Scholar 

  • Mueller, R.A. 1971. Effect of 6-hydroxydopamine on the synthesis and turnover of catecholamines and protein in the adrenal. In: 6-Hydroxydopamine and Catecholamine Neurons (Eds., Malmfors, T. and Thoenen, H.) Amsterdam-London: North-Holland Publishing Company, pp. 291.

    Google Scholar 

  • Mueller, R.A., Thoenen, H. and Axelrod, J. 1969 a. Adrenal tyrosine hydroxylase; compensatory increase in activity after chemical sympathectomy. Science 158: 468.

    Article  Google Scholar 

  • Mueller, R.A., Thoenen, H. and Axelrod, J. 1969 b. Increase in tyrosine hydroxylase activity after reserpine administration. J. Pharmacol. Exp. Ther. 169: 74.

    PubMed  CAS  Google Scholar 

  • Mueller, R.A., Thoenen, H. and Axelrod, J. 1969 c. Inhibition of trans-synaptically increased tyrosine hydroxylase activity by cycloheximide and actinomycin D. Mol. Pharmacol. 5: 463.

    PubMed  CAS  Google Scholar 

  • Musacchio, J.M., Julou, L., Kety, S.S. and Glowinski, J. 1969. Increase in rat brain tyrosine hydroxylase activity produced by electroconvulsive shock. Proc. Nat. Acad. Sci.USA 63: 1117.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, R.L. and Kirshner, N. 1971. Effect of stimulation on the levels of tyrosine hydroxylase, dopamine β-hydroxylase, and catecholamines in intact and denervated rat adrenal glands. Mol. Pharmacol. 7: 87.

    PubMed  CAS  Google Scholar 

  • Reis, D.J., Moorhead, D.T., Rifkin, M., Joh, T.H. and Goldstein, M. 1971. Changes in adrenal enzymes synthesizing catecholamines in attack behavior evoked by hypothalamic stimulation in the cat. Nature 229:562.

    Article  PubMed  CAS  Google Scholar 

  • Richter, D. 1970. Protein metabolism and functional activity. In: Protein Metabolism of the Nervous System (Ed. Lajtha, A.) London: Plenum Press, pp. 241.

    Google Scholar 

  • Sedvall, G.C. and Kopin, I.J. 1967. Influence of sympathetic denervation and nerve impulse activity on tyrosine hydroxylase in the rat submaxillary gland. Biochem. Pharmacol. 16: 39.

    Article  CAS  Google Scholar 

  • Smith, A.D., De Potter, W.P., Moerman, E.J. and De Schaepdryver, A.F. 1970. Release of dopamine β-hydroxylase and chromogranin A upon stimulation of the splenic nerve. Tissue and Cell 2: 547.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen, H. 1969. Bildung und funktionelle Bedeutung adrenerger Ersatztransmitter. Berlin-Heidelberg-New York: Springer-Verlag.

    Google Scholar 

  • Thoenen, H. 1970. Induction of tyrosine hydroxylase in peripheral and central adrenergic neurons by cold-exposure of rats. Nature 228: 861.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen, H. 1972. Comparison between the effect of neuronal activity and nerve growth factor on enzymes involved in the synthesis of norepinephrine. Pharmacol. Rev. 24:255.

    PubMed  CAS  Google Scholar 

  • Thoenen, H., Kettler, R., Burkard, W. and Saner, A. 1971. Neurally mediated control of enzymes involved in the synthesis of norepinephrine: Are they regulated as an operational unit? Naunyn-Schmiedebergs Arch. Pharmak. 270: 146.

    Article  CAS  Google Scholar 

  • Thoenen, H., Mueller, R.A. and Axelrod, J. 1969 a. Increased tyrosine hydroxylase activity after drug-induced alteration of sympathetic transmission. Nature 221: 1264.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen, H., Mueller, R.A. and Axelrod, J. 1969 b. Trans-synaptic induction of adrenal tyrosine hydroxylase. J. Pharmacol. Exp. Ther. 169: 249.

    PubMed  CAS  Google Scholar 

  • Thoenen, H., Mueller, R.A. and Axelrod, J. 1970. Phase difference in the induction of tyrosine hydroxylase in cell body and nerve terminals of sympathetic neurones. Proc. Nat. Acad. Sci. USA 65: 58.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen, H. and Tranzer, J.P. 1968. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn-Schmiedebergs Arch. Pharmak. 261: 271.

    CAS  Google Scholar 

  • Udenfriend, S. and Dairman, W. 1971. Regulation of norepinephrine synthesis. Adv. Enzyme Regul. 9: 145.

    Article  Google Scholar 

  • Viveros, O.H., Arqueros, L. and Kirshner, N. 1968. Release of catecholamines and dopamine g-oxidase from the adrenal medulla. Life Sci. 7: 609.

    Article  CAS  Google Scholar 

  • Viveros, O.H., Arqueros, L., Connett, R.J. and Kirshner, N. 1969. Mechanism of secretion from the adrenal medulla IV. The fate of storage vesicles following insulin and reserpine administration. Mol. Pharmacol. 5: 69.

    PubMed  CAS  Google Scholar 

  • Weiner, N. 1972. Modification of norepinephrine synthesis in intact tissue during short-term adrenergic nerve stimulation. Pharmacol. Rev, (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Thoenen, H., Oesch, F. (1973). New Enzyme Synthesis as a Long-Term Adaptation to Increased Transmitter Utilization. In: Mandell, A.J. (eds) New Concepts in Neurotransmitter Regulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4574-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4574-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4576-3

  • Online ISBN: 978-1-4613-4574-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics