Skip to main content

Self-Induced Emission in Optically Pumped HF Gas: The Rise and Fall of the Superradiant State

  • Chapter
Laser Spectroscopy

Abstract

In 1954 R. H. Dicke pointed out that the spontaneous emission rate of an assembly of atoms would be much greater than that of an isolated atom.1 This effect, called superradiance, is due to cooperation of the atoms coupled via the common radiation field. In his treatment Dicke distinguished two regimes, characterized by whether the atoms are confined to a region small or large compared to the wavelength of the emitted radiation. In the former case the theoretical formulation is straightforward, and the predictions have been confirmed in the microwave region.2 For extended samples, as occur in the optical range, the theory is more complex, since propagation effects must be taken into account. Several theoretical treatments have been given, 3–8 but as yet there is no general agreement as to the details of the radiation process. Experimentally, a number of coherent optical effects closely related to the concepts used to treat superradiance had been observed. 9–15 In a recent paper16, the first observation of superradiant pulse evolution was reported in far-infrared transition of optically pumped HF gas, and an analysis was given. The present paper is a continuation and elaboration of that work.

Work supported in part by National Science Foundation and Research Corporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. H. Dicke, Phys. Rev. 93, 99, (1954).

    Article  ADS  MATH  Google Scholar 

  2. A. Abragam, The Principles of Nuclear Magnetism, (Oxford U. P., London, 1961); R. M. Hill, D. E. Kaplan, G. F. Herrmann and S. K. Ichiki, Phys. Rev. Letters. 18., 105 (1967).

    Google Scholar 

  3. V. Ernst and P. Stehle, Phys. Rev. 176, 1456 (1968).

    Article  ADS  Google Scholar 

  4. G. S. Aggarwal, Phys. Rev. A2, 2038 (1970).

    Article  ADS  Google Scholar 

  5. R. H. Lemberg, Phys. Rev. A2, 883 and 889 (1970).

    ADS  Google Scholar 

  6. D. Dialetis, Phys. Rev. A2, 599 (1970).

    Article  ADS  Google Scholar 

  7. N. E. Rehler and J. H. Eberly, Phys. Rev. A3, 1735 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Bonifacio, P. Schwendimann, and F. Haake, Phys. Rev. A4, 302 (1971) and A4, 854 (1971).

    ADS  Google Scholar 

  9. I.D. Abella, N.A. Kurnit and S.R. Hartmann, Phys. Rev. 141, 391 (1966); C. K. N. Patel and R. E. Slusher, Phys. Rev. Letters 20, 1087 (1968).

    Article  ADS  Google Scholar 

  10. S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).

    Article  ADS  Google Scholar 

  11. R. E. Slusher and H. M. Gibbs, Phys. Rev. A5, 1634 (1972).

    Article  ADS  Google Scholar 

  12. G. B. Hocker and C. L. Tang, Phys. Rev. 184, 356, (1969).

    Google Scholar 

  13. E. B. Treacy and A. J. DeMaria, Phys. Letters 29A, 369 (1969).

    ADS  Google Scholar 

  14. H. P. Grieneisen, N. A. Kurnit and A. Szöke, Opt. Commun. 3, 259 (1971).

    Article  ADS  Google Scholar 

  15. R. G. Brewer and R. L. Shoemaker, Phys. Rev. Letters 27, 631 (1971) and R.L. Shoemaker and R. G. Brewer, Phys. Rev. Letters 28, 1430 (1972).

    Article  ADS  Google Scholar 

  16. N. Skribanowitz, I. P. Herman, J. C. MacGillivray and M. S. Feld, Phys. Rev. Letters 30, 309 (1973)

    Article  ADS  Google Scholar 

  17. N. Skribanowitz, I. P. Herman, R. M. Osgood, Jr., M. S. Feld and A. Javan, Appl. Phys. Letters 20, 428 (1972).

    Article  ADS  Google Scholar 

  18. N. Skribanowitz, Ph. D. Thesis, M. I. T., 1973 (unpublished).

    Google Scholar 

  19. See, for example, L. W. Casperson and A. Yariv, IEEE J. Quantum Electron. QE-8, 80 (1972), and J. H. Parks, in Fundamental and Applied Laser Physics: Proceedings of the Esfahan Symposium, edited by M. S. Feld, N. A. Kurnit and A. Javan (Wiley, New York, 1973), and references contained therin.

    Article  ADS  Google Scholar 

  20. D.A. Leonard, Appl. Phys. Letters 7, 4 (1965).

    Article  ADS  Google Scholar 

  21. R. H. Dicke, in Proceedings of the Third International Conference on Quantum Electronics, Paris 1963, edited by P. Grivet and N. Bloembergen (Columbia Univ. Press, New York, 1964), p.35.

    Google Scholar 

  22. The connection between Dicke’s formalism and the semiclassical approach has been discussed by F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas [Fundamental and Applied Laser Physics: Proceedings of the Esfahan Symposium, edited by M. S. Feld, N. A. Kurnit and A. Javan (Wiley, New York, 1973)]. The semiclassical approach has also been applied to superradiance by Friedberg and Hartman [Phys. Lett. 38A, 227 (1972)]. A promising analysis whish is fully quantum mechanical has been given by Willis and Picard [Phys. Rev. A, to be published(Sep.,1973)].

    Google Scholar 

  23. N. Skribanowitz, I. P. Herman and M. S. Feld, Appl. Phys. Lett. 21, 466 (1972).

    Article  ADS  Google Scholar 

  24. R. G. Wenzel and G. P. Arnold, IEEE J. Quantum Electron. QE-8, 26 (1972).

    Article  ADS  Google Scholar 

  25. We are grateful to Bob Wenzel of Los Alamos Scientific Laboratory for providing plans for this laser.

    Google Scholar 

  26. J. D. Jackson, Classical Electrodynamics, (John Wiley and Sons, New York, 1962).

    Google Scholar 

  27. F. Bloch, Phys. Rev. 70, 460 (1946).

    Article  ADS  Google Scholar 

  28. A. Icsevgi and W. E. Lamb, Jr., Phys. Rev. 185, 517 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  29. See, for example, Ref. 28; F. A. Hopf and M. D. Scully, Phys. Rev. 179, 399 (1969); and Ref. 10. For a comprehensive list of references, see G. L. Lamb, Jr., Rev. Mod. Phys. 43, 99 (1971).

    Article  ADS  Google Scholar 

  30. J.C. MacGillivray, I.P. Herman, N. Skribanowitz and M.S. Feld, Phys. Rev. A, to be published.

    Google Scholar 

  31. This formula is a consequence of the optical pumping process and is not in any way basic to the superradiant pulse evolution process.

    Google Scholar 

  32. R. Friedberg and S. R. Hartmann, Phys. Lett. 37 A. 285 (1971).

    Google Scholar 

  33. C. K. Rhodes, A. Szöke and A. Javan, Phys. Rev. Letters 21, 1151 (1968).

    Article  ADS  Google Scholar 

  34. J. A. Fleck, Jr. [Phys. Rev. B1, 84 (1970)] has considered a related problem in which spatial variations are neglected.

    Google Scholar 

  35. In a long sample where the transit time is greater than TR, the sample can break up into independently radiating sections. This effect is related to the cooperation length described by F. T. Arecchi and E. Courtens [Phys. Rev. A2, 1730 (1970)]. Further discussion of such effects will be given in Ref. 30.

    Google Scholar 

  36. R. P. Feynman, F. L. Vernon, Jr., and R. W. Hellwarth, J. Appl. Phys. 28, 49 (1957).

    Article  ADS  Google Scholar 

  37. D. C. Burnham and R. Y. Chiao, Phys. Rev. 188, 667 (1969); see also G. L. Lamb, Jr., Phys. Letters 29A, 507 (1969), and F. T. Arecchi and E. Courtens (Ref. 35).

    Article  ADS  Google Scholar 

  38. M.D. Crisp, Phys. Rev. A1, 1604 (1970).

    Article  ADS  Google Scholar 

  39. Note that this conclusion applies only to an inhomogeneously broadened system, where de-excitation of the levels is unimportant. The population decay associated with homogeneous broadening cannot be counteracted by high gain.

    Google Scholar 

  40. N. Tan-no, K. Kan-no, K. Yokoto and H. Inaba, IEEE J. Quantum Electron. QE-9, 423 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Herman, I.P., MacGillivray, J.C., Skribanowitz, N., Feld, M.S. (1974). Self-Induced Emission in Optically Pumped HF Gas: The Rise and Fall of the Superradiant State. In: Brewer, R.G., Mooradian, A. (eds) Laser Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4517-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4517-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4519-0

  • Online ISBN: 978-1-4613-4517-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics