Skip to main content

Gradient-Related Constrained Minimization Algorithms in Function Spaces: Convergence Properties and Computational Implications

  • Chapter
Large Scale Optimization

Abstract

Good finite-dimensional approximations to projected gradient and conditional gradient iterates in feasible sets of L p functions u(-): [0,1] →U are relatively easy to compute when U is a simple closed convex set in Rm (e.g., an orthant, box, simplex, ball, etc.). Much is also known about the convergence behavior of the underlying infinite-dimensional iterative processes in these circumstances. Several novel features of this behavior are examined here, and the associated computational implications are explored with analytical tools and numerical experiments. The conclusions reached are immediately applicable to constrained input continuous-time optimal control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levitin, E. S., and Poljak, B. T. (1966), “Constrained Minimization Problems,” USSR Comp. Math. Phys. 6, 1–50.

    Article  MathSciNet  Google Scholar 

  2. Demyanov, V. F., and Rubinov, A. M. (1970), Approximation Methods in Optimization Problems, American Elsevier, New York.

    Google Scholar 

  3. Armijo, L. (1966), “Minimization of Functions having Continuous Partial Derivatives,” Pacific J. Math. 16, 1–3.

    MathSciNet  MATH  Google Scholar 

  4. Dunn, J. C. (1980), “Convergence Rates for Conditional Gradient Sequences Generated by Implicit Step Length Rules,” SIAM J. Control Optimiz. 18, (5), 472–487.

    Article  MathSciNet  Google Scholar 

  5. Goldstein, A. A. (1964), “Convex Programming in Hilbert Space,” Bull. Amer. Math. Soc. 70, 709–710.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertsekas, D. P. (1976), “On the Goldstein-Levitin-Polyak Gradient Projection Method,” Proc. 1974 IEEE CDC, Phoenix, AZ, 47-52, and IEEE Trans. Auto. Control AC-10, 174–184.

    Google Scholar 

  7. Dunn, J. C. (1981), “Global and Asymptotic Convergence Rate Estimates for a Class of Projected Gradient Processes,” SIAM J. Control Optimiz. 19, (3), 368–400.

    Article  MathSciNet  MATH  Google Scholar 

  8. Dunn, J. C. (1979), “Convergence for Conditional Gradient Algorithms Near Singular and Nonsingular Extremals,” SIAM J. Control Optimiz. 17, (2) 187–211

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunn, J. C. (1983), “Extremal Types for Certain L p -Minimization Problems and Associated Large Scale Nonlinear Programs,” Appl. Math., Optimiz. 10, 303–335.

    Article  Google Scholar 

  10. Gawande, M. and Dunn, J. C. (1988), “Variable Metric Gradient Projection Processes in Convex Feasible Sets Defined by Nonlinear Inequalities,” Appl. Math. Optimiz. 17, 103–119.

    Article  MathSciNet  MATH  Google Scholar 

  11. Fletcher, R. (1980), Practical Methods of Optimization, Vol.:2, John Wiley and Sons, New York.

    MATH  Google Scholar 

  12. Bertsekas, D. P. (1982), Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York.

    MATH  Google Scholar 

  13. Maurer, H. and Zowe, J. (1979), “First and Second-Order Necessary and Sufficient Optimality Conditions for Infinite-Dimensional Programming Problems,” Math. Programming 16, (1), 98–110.

    Article  MathSciNet  MATH  Google Scholar 

  14. Maurer, H. (1981), “First and Second Order Sufficient Optimality Conditions in Mathematical Programming and Optimal Control,” Math. Prog. St. 14, 163–177.

    MathSciNet  MATH  Google Scholar 

  15. Alekseev, V. M., Tikhomirov, V. M. and Fomin, S. V. (1987), Optimal Control, Plenum Publishing Co., New York.

    MATH  Google Scholar 

  16. Dunn, J. C., and Tian, T. (1992), “Variants of the Kuhn-Tucker Sufficient Conditions in Cones of Nonnegative Functions,” SIAM J. Control Optimiz. 30, (6) 1361–1384.

    Article  MathSciNet  MATH  Google Scholar 

  17. Dunn, J. C. (1992), “Kuhn-Tucker Optimality Conditions in Sets of L∞ Functions with Range in a Polyhedron,” Preprint.

    Google Scholar 

  18. Dontchev, A. S., Hager, W. W., Poore, A. B., and Yang, B. (1992), “Optimality, Stability and Convergence in Nonlinear Control,” Preprint.

    Google Scholar 

  19. Tian, T., and Dunn, J. C. (1992), “On the Gradient Projection Method for Optimal Control Problems with Non-Negative L2 Inputs,” SIAM J. Control Optimiz., In Press

    Google Scholar 

  20. Dunn, J.C. and Sachs, E. (1983), “The Effects of Perturbations on the Convergence Rates of Optimization Algorithms,” Appl. Math., Optimiz. 10, 143–157.

    Article  MathSciNet  MATH  Google Scholar 

  21. Bertsekas, D. P. (1982), “Projected Newton Methods for Optimization Problems with Simple Constraints,” SIAM J. Control Optimiz. 20, 221–246.

    Article  MathSciNet  MATH  Google Scholar 

  22. Gafni, E. M. and Bertsekas, D. P. (1984), “Two-metric Projection Methods for Constrained Minimization,” SIAM J. Control Optimiz. 22 (6), 936–964.

    Article  MathSciNet  MATH  Google Scholar 

  23. Dunn, J. C. (1988), “A Projected Newton Method for Minimization Problems with Nonlinear Inequality Constraints,” Numer. Math. 53, 377–409.

    Article  MathSciNet  MATH  Google Scholar 

  24. Dunn, J. C. (1991), “A Subspace Decomposition Principle for Scaled Gradient Projection Methods: Global Theory,” SIAM J. Control Optimiz. 29, (5), 1160–1175.

    Article  MathSciNet  MATH  Google Scholar 

  25. Dunn, J. C. (1993), “A Subspace Decomposition Principle for Scaled Gradient Projection Methods: Local Theory,” SIAM J. Control Optimiz. 31, (1), 219–246.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kelley, H. J. (1962), “Method of Gradients,” Chapter 6 in Optimization Techniques, Academic Press.

    Google Scholar 

  27. Dunn, J. C. and Kumar, V. (1976), “An Averaging Technique for Solving Extremal Boundary Value Problems,” in Recent Advances in Engineering Science 8, Scientific Publishers, Inc., Boston.

    Google Scholar 

  28. Dunn, J. C. (1974), “A Simple Averaging Process for Approximating the Solutions of Certain Optimal Control Problems,” J. Math. Anal. Applic. 48, (3) 875–894.

    Article  MathSciNet  MATH  Google Scholar 

  29. Mayne, D. Q. and Polak, E. (1975), “First Order Strong Variation Algorithms for Optimal Control,” J. Optimiz. Th. Applic. 16 (3–4), 277–301.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dunn, J.C. (1994). Gradient-Related Constrained Minimization Algorithms in Function Spaces: Convergence Properties and Computational Implications. In: Hager, W.W., Hearn, D.W., Pardalos, P.M. (eds) Large Scale Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3632-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3632-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3634-1

  • Online ISBN: 978-1-4613-3632-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics