Skip to main content

e+e Physics at 100 GeV

  • Chapter
Particles and Fields 2
  • 134 Accesses

Abstract

Despite the confident belief of some theorists that they know what will happen at 100 GeV, the primary reason for building very large e+e machines is to find out how the weak interactions really behave at high energy. Something new must happen. Naive extrapolation of the amplitudes observed at low energy gives weak cross-sections for ēν→X and ēe→X which violate unitarity at \(\sqrt {\text{s}} = 650\) GeV and 1300 GeV, respectively. Something must happen before these energies - perhaps at around 100 GeV where the extrapolated values of the weak and electromagnetic cross-sections of ēe→X become equal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review see J.J. Sakurai UCLA preprint “The Structure of Charged Currents” to be published in Proc. 1981 Hawaii Neutrino Conference.

    Google Scholar 

  2. For a review of neutral current data see J.E. Kim, P. Langacker, M. Levine and H.H. Williams, Rev. Mod. Phys. 53, 211 (1981).

    Google Scholar 

  3. J.G. Branson, rapporteurs talks at the 1981 Bonn Symposium on Lepton and Photon Interactions at High Energy. M. Chen, these preceedings.

    Google Scholar 

  4. J.D. Bjorken, Phys. Rev. D19, 335 (1979).

    ADS  MathSciNet  Google Scholar 

  5. P.Q. Hung and J.J. Sakurai, Nucl. Phys. B143, 81 (1978).

    Article  ADS  Google Scholar 

  6. N, Wright, UCLA preprint UCLA/81/TEP/14 (1981).

    Google Scholar 

  7. CERN Yellow Report 79-01 (1979). J.R. Ellis, Physica Scripta 23, 328 (1980).

    Google Scholar 

  8. E. Ma, Phys. Lett. B100, 251 (1981).

    Google Scholar 

  9. F. del Aguila and A. Mendez, Nucl. Phys. B189, 212 (1981).

    Article  ADS  Google Scholar 

  10. C.H. Llewellyn Smith, Oxford preprint 36/81, to be published in Proc. 16th Rencontre de Moriond.

    Google Scholar 

  11. Such models have been discussed by many authors. For a general analysis see V. Barger, E. Ma and K. Whisnant, Madison Preprint DOE-ER/00881-203 (1981).

    Google Scholar 

  12. V.S. Berezinsky and A. Yu Smirnov, Phys. Lett. 94B, 505 (1980).

    Google Scholar 

  13. In SU(2) xU(l) xU(l)’ models in which fine tuning is not permitted Mz, w must be close to the standard values. See E.H. de Groot, G.J. Gounaris and D. Schildkneckt, Phys. Lett. 85B, 399 (1979); 90B, 427 (1980) and Zeit. Phys. C5, 127 (1980).

    Google Scholar 

  14. V. Barger, E. Ma and K. Whisnant, Phys. Rev. Lett. 46, 1501 (1981). See also V. Barger, W.Y. Keung and E. Ma, Phys. Rev. Lett, 44, 1169 (1980). Phys. Rev. D22, 727 (1980) and Phys. Lett. 94B, 377 (1980).

    Article  ADS  Google Scholar 

  15. V. Barger, E. Ma and K. Whisnant, Madison preprpint DOE-ER/00881-216 (1981). In Madison preprint MAD/Ph/11, which I received after this talk was written, the authors strengthen their bound on Mz1(C) slightly so that it gives Mz1 LESSTHAN118 GeV for CLESSTHAN0.03, or 116 MeV for C LESSTHAN 0.027 the limit they use. They infer from data on ēe→hadrons that CLESSTHAN0.016 (95% CL) which gives Mz1 LESSTHAN 108 GeV. In a subsequent paper (MAD/PH/16) they present a model with the property that C ∝ sin4 θ is naturally small, in which Mz1 LESSTHAN100 GeV. This makes my probable bound for reasonable models look conservative.

    Google Scholar 

  16. T.G. Rizzo and G. Senjanovic, Phys. Rev. Lett. 1315 (1981) and Phys. Rev. D24, 704 (1981).

    Google Scholar 

  17. X. Li and R.E. Marshak, Virginia Polytechnic preprint VPI-HEP81/5 (1981).

    Google Scholar 

  18. See e. g. C.H. Llewellyn Smith, G.G. Ross and J.F. Wheater, Nucl. Phys. B177, 263 (1981).

    Google Scholar 

  19. W.J. Marciano and A. Sirlin, Nucl. Phys. B189, 442 (1981).

    Article  ADS  Google Scholar 

  20. C.H. Llewellyn Smith and J.F. Wheater, Phys. Lett. 105B, 486 (1981).

    Google Scholar 

  21. A. Silverman, report to the 1981 Bonn Symposium on Lepton and Photon Interactions at High Energy. N. Horwitz, these proceedings.

    Google Scholar 

  22. W. Barger, W.Y. Keung and R.J.N. Phillips, Phys. Rev. D24, 1328 (1981).

    ADS  Google Scholar 

  23. This sample of predictions was kindly supplied by Luis Ibanez.

    Google Scholar 

  24. C.D. Froggatt and H.B. Neilsen, Nucl. Phys. B147, 277 (1979).

    Article  ADS  Google Scholar 

  25. B. Pendleton and G.G. Ross, Phys. Lett. 98B, 291 (1981).

    Google Scholar 

  26. For a review see S.L. Glashow in “Gauge Theory and Experiments at High Energy” eds. K. Bowler and D.G. Sutherland, Scottish Universities Summer School in Physics (1980).

    Google Scholar 

  27. H. Georgi, H. Quinn and S. Weinberg, Phys. Rev. Lett. 32, 451 (1974).

    Google Scholar 

  28. P.Q. Hung, A.J. Buras and J.D. Bjorken, Fermilab PUB81/22 Thy. (1981).

    Google Scholar 

  29. J.C. Pati, A. Salam and J. Strathdee, IOTP Physics Pub. 82 - 061 (1981).

    Google Scholar 

  30. For a review see A. Zee, University of Washington Preprint RLO-1388/873 (1981).

    Google Scholar 

  31. G. Barbiellini, B. Richter and J.S. Siegrist, SLAG-PUB 2744, (1981).

    Google Scholar 

  32. For a detail review see G. Barbiellini et al., DESY 79 /27, (1979)

    Google Scholar 

  33. F. Wilczek, Phys. Rev. Lett. 39, 1304 (1977). Modifications are given by J. Ellis et al., Phys. Lett. 83B, 339 (1979).

    Article  ADS  Google Scholar 

  34. J.D. Bjorken in Proc. 1976 SLAG Summer Institute, SLAC-198.

    Google Scholar 

  35. J. Ellis, M.K. Gaillard and D.V. Nanopoulos, Nucl. Phys. B106, 292 (1976).

    ADS  Google Scholar 

  36. J.F. Donoghue and L.F. Li, Phys. Rev. D19, 945 (1979).

    ADS  Google Scholar 

  37. E. Golowich and T.G. Yang, Univ. of Massachusetts preprint “Charged Higgs Bosons and Decays of Heavy Flavoured Mesons” (1978).

    Google Scholar 

  38. E. Gildener, Phys. Rev. D14, 1667 (1976). For a recent discussion see G.H. Llewellyn-Smith and G.G. Ross, Phys. Lett. 105B, 38 (1981).

    Google Scholar 

  39. For a discussion of the uncertainties which are introduced by the possible plethora of Higgs fields in SO(IO) even without strong interactions see F. del Aguila and L.E. Ibanez, Nucl. Phys. B177, 60 (1981).

    Google Scholar 

  40. S. Weinberg, Phys. Rev. D13, 974 (1976) and D19, 1277 (1979). L. Susskind, Phys. Rev. D20, 2619 (1979). For reviews see E. Farhi and L. Susskind, Phys. Rep. 74, 277 (1981). P. Sikivie, CERN TH 3083 (1981). K.D. Lane and M.E. Peskin in “Electroweak Interactions and Unified Theories” ed. J. Tran Thanh Van, Editions Frontieres (1980).

    Google Scholar 

  41. S. Dimopoulos and L. Susskind, Nucl. Phys. B155, 237 (1979). E. Eichten and K. Lane, Phys. Lett. 90B, 125 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  42. S. Dimopoulos, Nucl. Phys. B168, 69 (1980). M. E. Peskin, Nucl. Phys. B175, 197 (1980).

    Google Scholar 

  43. J. Ellis and P. Sikivie, Phys. Lett. 104B, 141 (1981).

    Google Scholar 

  44. S. Dimopoulos and J. Ellis, Nucl. Phys. B182, 505 (1981).

    Article  ADS  Google Scholar 

  45. B. Holdom, Phys. Rev. D24, 1441 (1981).

    ADS  Google Scholar 

  46. For reviews see refs. 38, A. Ali, DESY 81/032, and a much advertised forthcoming DESY preprint “Technicolour Particles at LEP” by G. Barbiellini et al.

    Google Scholar 

  47. S. Rudaz and J. Vermaseren, GERN TH 2961 (1980).

    Google Scholar 

  48. S. Ghadha and M.E. Peskin, Nucl. Phys. B185, 61 (1981). Recently Binetruy, Ghadha and Sikivie have shown (GERN TH 3163) that not only do ETG interactions not contribute any mass to but that their contribution to Mp± is negligible. However, having invoked new non ETG interactions to give a mass to p0,3 must entertain the possibility of new contributions to Mp± also.

    Article  ADS  Google Scholar 

  49. S. Dimopoulos, S. Raby and P. Sikivie, Nucl. Phys. B176, 449 (1980). S. Dimopoulos, S. Raby and G.L. Kane, Nucl. Phys. B182, 77 (1981). J. Ellis, D.V. Nanopoulos and P. Sikivie, Phys. Lett. 101B, 529 (1981).

    Article  ADS  Google Scholar 

  50. J. Ellis, M.K. Gaillard, D.V. Nanopoulos and P. Sikivie, Nucl. Phys. B182, 529 (1981).

    Google Scholar 

  51. M. Ghen, these proceedings. J. Barger, rapporteurs talk at the 1981 Bonn Symposium on Lepton and Photon Interactions at High Energy. P. Duinker, report to the 1981 EPS Lisbon Gonference.

    Google Scholar 

  52. For a review see H. Harari, these proceedings.

    Google Scholar 

  53. H.J. Lipkin, Phys. Lett. 103B, 440 ( 1981).

    Google Scholar 

  54. G.’t Hooft, Lectures at the 1979 Cargese Sunmier School.

    Google Scholar 

  55. See Resumé of the Wuppertal meeting on “Physics with ep Colliders in View of HERA”, DESY HERA 81/18 (1981).

    Google Scholar 

  56. H. Terazawa, INS Tokyo preprint INS-Rep 416 (1981).

    Google Scholar 

  57. L.F. Abbot and E. Farhi, Nucl. Phys. B189, 547 (1981, Phys. Lett. 101B, 69 (1981).

    Google Scholar 

  58. H. Fritzsch and G. Mandelbaum, Max Planck Munich preprint MPI-PAE/PTh 22/81 (1981). R. Barbieri, R.N. Mohapatra and A. Masiero, CERjN TH 3089 (1981).

    Google Scholar 

  59. For reviews,see E. Witten, 1981 Erice lectures (to be published), J. Wess, Princeton Lectures 1981 (submitted to Princeton University Press) and S. Ferrara and P. Fayet, Phys. Rep. U, 12, 249 (1977).

    Google Scholar 

  60. p. Fayet, Phys, Lett. 69B, 489 (1977).

    Google Scholar 

  61. L. O’Raifeartaigh, Nucl. Phys. B111, 516 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  62. See for example, S. Dimoplulos and S. Raby, SLAC PUB 2719 (1981). M. Dine, W. Fischler and M. Srednicki, Nucl. Phys. B189, 594 (1981). S. Dimopoulos and H. Georgi, Harvard preprint HUTP 81/A022 (1981). L.E. Ibanez and G.G. Ross, Oxford preprint 97 /81 (1981).

    Google Scholar 

  63. The phenomenology was developed by Fayet and Farrar. References to the original literature may be found in P. Fayet in “Unification of Fundamental Particle Interactions”, eds. S. Ferrara, J. Ellis and P. van Nieuwenhuizen (Plenum, 1980). P. Fayet to be published in Proc. 1981 Rencontre de Moriond. G. Farrar in Proc. Cornell Z0 Workshop, eds. M.E. Peskin and S.H.H. Tye, CLNS 81-485. For detailed analysis of SS and e+e¯ physics see G. Barbiellini et al. DESY 79/67 (1979).

    Google Scholar 

  64. P. Fayet (ref. 63).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Smith, C.H.L. (1983). e+e Physics at 100 GeV. In: Capri, A.Z., Kamal, A.N. (eds) Particles and Fields 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3593-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3593-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3595-5

  • Online ISBN: 978-1-4613-3593-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics