Skip to main content

An Introduction to Perturbative QCD

  • Chapter
Particles and Fields 2
  • 134 Accesses

Abstract

Before embarking on a detailed discussion of QCD perturbation theory it is worth recalling the main reasons for taking QCD seriously which are:1

  1. 1.

    There is excellent evidence that hadrons are made of tricoloured quarks and that the force between them is vector in nature. This force must be colour dependent, otherwise there would be nine degenerate π mesons with different colours. The only renormalizable field theories with these properties are gauge theories based on SU(3) (i. e. QCD) or on SO(3).

  2. 2.

    QCD, but not theories based on SO(3), accounts qualitatively for the observed features of hadrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. For a more general review of the status of QCD see C. H. Llewellyn Smith, Phil. Trans. Roy. Soc. (in press).

    Google Scholar 

  2. For reviews of tests of chiral symmetry see V. De Alfaro et al, “Currents in Hadron Physics”, North Holland, L973, or H. Pagels, Phys. Rep. 5, 219 (1975).

    Google Scholar 

  3. This result is due originally to Nambu. It was rediscovered by Lipkin and Feynman. See e. g. R. P. Feynman in “Weak and Electromagnetic Interactions at High Energy” ed. R. Balian and C. H. Llewellyn Smith, North Holland, 1977.

    Google Scholar 

  4. A. De Rujula, H. Georgi and S. L. Glashow, Phys. Rev. Dl2, 147 (1975).

    Article  Google Scholar 

  5. N. Isgur, p. 30 in “High Energy Physics”, ed. L. Durand and L. G. Pondrom, American Inst, of Physics 1980.

    Google Scholar 

  6. For reviews of various aspects of perturbative QCD see A. Buras, Rev. Mod. Phys. 52, 199 (1980); Y. L. Dokshitzer, D. A. Dyakanov and S. I. Troyan, Phys. Rep. 58, 269 (1980); E. Reya, Phys. Rep. 69, 196 (1981); A. H. Mueller, Phys. Rep. 73, 237 (1981); G. Altarelli, to be published in Phys. Rep.; Proc. Conf. on Perturbative QCD, Tallahassee 1981 (to appear); S. J. Brodsky and G. Lepage, these proceedings.

    Google Scholar 

  7. For details of the experimental situation see Proc. 1981 Bonn Symposium on Lepton and Photon Interactions at High Energy and Lectures by D. H. Perkins and M. Chen in these proceedings.

    Google Scholar 

  8. See e. g. G. Altarelli, ref. 6.

    Google Scholar 

  9. The details of this calculation are given by R. D. Field in “Quantum Flavordynamics, Quantum Chromodynamics and Unified Theories” ed. K. T. Mahanthappa and J. Randa, Plenum Press, 1980.

    Google Scholar 

  10. For a review of scheme dependence in QCD and references see e. g. C. H. Llewellyn Smith p. 1346 in “High Energy Physics 1980”, ed. L. Durand and L. G. Pondrom, American Inst, of Physics 1980.

    Google Scholar 

  11. Only a sketch of renormal iza t ion and the renormal iz at ion group is given. For a detailed account see C. Itzykson and J. B. Zuber, “Quantum Field Theory”, McGraw-Hill, 1980.

    Google Scholar 

  12. H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973); D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).

    Article  ADS  Google Scholar 

  13. C. H. Llewellyn Smith, Acta Physica Austríaca XIX, 331 (1978).

    Google Scholar 

  14. C. G. Callan, N. Coote and D. J. Gross, Phys. Rev. D13, 1649 (1976); M. B. Einhorn, Phys. Rev. D14, 3451 (1976).

    Article  ADS  Google Scholar 

  15. E. Poggio, H. Quinn and S. Weinberg, Phys. Rev. D13, 1958 (1976); R. Shankar, Phys. Rev. D15, 755 (1977).

    Google Scholar 

  16. This was first pointed out by L. N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975) and later rediscovered by others. See ref. 6 and refs. therein.

    Google Scholar 

  17. L. N. Lipatov (loc. cit); J. Kogut and L. Susskind, Phys. Rev. D9, 697 and 3391 (1974); G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

    Google Scholar 

  18. Y. P. Yao, Phys. Rev. Lett. 36, 653 (1976); L. Tyburski, Nucl. Phys. B116, 291 (1976).

    Google Scholar 

  19. T. Kinoshita, J. Math. Phys. 3, 650 (1962); T. D. Lee and M. Nauenberg, Phys. Rev. 133, B1549 (1964).

    Google Scholar 

  20. V. Ganapathi and G. Sterman, Phys. Rev. D23, 2408 (1981).

    ADS  Google Scholar 

  21. J. Frenkel and J. C. Taylor, Nucl. Phys. B116, 185 (1976); T. Kinoshita and A. Ukawa, Phys. Rev. D16, 332 (1977).

    Google Scholar 

  22. R. Doria, J. Frenkel and J. C. Taylor, Nucl. Phys. B168, 93 1.; A. Andrasi, M. Day, R. Doria, J. Frenkel and J. C. Taylor, Nucl. Phys. B182, 104 (1981); C. Di’Lieto, S. Gendron, I. G. Halliday and C. T. Sachrajda,Nucl. Phys. B183, 223 2.; N. Yoshida, Tokyo preprint UT 353, 354 (1981).

    Google Scholar 

  23. C. Carneiro, M. Day, J. Frenkel, J. C. Taylor and M. T. Thomas, Nucl. Phys. B183, 445 (1981); J. Frenkel, M. I. Frenkel and J. C. Taylor, Cambridge preprint DAMTP 81 /10 (1981).

    Google Scholar 

  24. For a review see N. Papanicolaou, Phys. Rep. 24, 230 (1976).

    Google Scholar 

  25. C. A. Nelson, Nucl. Phys. B181, 141 (1981) and Fermilab preprint PUB 80/82 (1980); N. Yoshida, Tokyo preprint UT 358 (1981); J. Frenkel, J. G. M. Gatheral and J. C. Taylor, Cambridge preprint DAMTP 81 /19 (1981).

    Article  ADS  Google Scholar 

  26. R. K. Ellis, H. Georgi, M. Machacek, H. D. Politzer and G. G. Ross, Nucl. Phys. B152, 285 (1978); D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys. B140, 34 (1978) and B146, 29 (1978); S.B. Libby and G. Sterman, Phys. Lett. 78B, 618 (1978) and Phys. Rev. D18, 2252 and 4737 (1978); A. H. Mueller, Phys. Rev. D18, 3705 (1978).

    Google Scholar 

  27. J. C. Collins and G. Sterman, Nucl. Phys. B185, 172 (1981).

    Google Scholar 

  28. G. T. Bodwin, S. J. Brodsky and G. P. Lepage, Phys. Rev. Lett. 47, 1799 (1981) and lectures in these proceedings.

    Article  ADS  Google Scholar 

  29. For a more formal and complete presentation of the proof out lined here see R. K. Ellis et al, ref. 23.

    Google Scholar 

  30. S. Coleman and R. E. Norton, Nuovo Cimento 38, 438 (1965).

    Article  Google Scholar 

  31. C. L. Basham, L. S. Brown, S. D. Ellis and S. T. Love, Phys. Rev. Lett. 41, 1585 (1978) and Phys. Rev. D19, 2018 (1979).

    Google Scholar 

  32. For a review see S. D. Ellis, to be published in Proc. Conf. on Perturbative QCD, Tallahassee, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Smith, C.H.L. (1983). An Introduction to Perturbative QCD. In: Capri, A.Z., Kamal, A.N. (eds) Particles and Fields 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3593-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3593-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3595-5

  • Online ISBN: 978-1-4613-3593-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics