Skip to main content

Aspects of the Lepton Generation Puzzle

  • Chapter
Particles and Fields 2
  • 134 Accesses

Abstract

The existence of multiple, seemingly redundant, generations of fundamental particles is one of the major puzzles facing particle physicists. There are at least three lepton generations or flavours, as depicted in Table I, which have in common a set of remarkable features. These include:

  1. 1)

    identical electromagnetic interactions, as evidenced by the spectacular agreement of experiments and theory on the values for electron and muon g-2,1

  2. 2)

    identical weak interactions embodied in tests of electronmuon universality in the branching ratio of π→eν/π→μν,

  3. 3)

    absence of strong interactions,

  4. 4)

    symmetry in the generation structure with the quark sector as required for the cancellation of anomalies,2

  5. 5)

    absence of flavour-changing interactions, such as μ →eγ, μ− +nucleus →e− +nucleus, K→μe and τ→μγ, and

  6. 6)

    existence of a conserved additive lepton number for each generation, as evidenced by searches for neutrinoless double-beta decay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. S. Van Dyck, Jr., P. B. Schwinger and H. G. Dehmelt, Phys. Rev. Lett. 38, 310 (1977); J. Bailey et al., CERN-Mainz-Daresbury collaboration, Nucl. Phys. B150, 1 (1979).

    Google Scholar 

  2. C. Bouchiat, J. Iliopoulos and Ph. Meyer, Phys. Lett. 38B, 519 (1972); D. J. Gross and R. Jackiw, Phys. Rev. D6, 477 (1972).

    Google Scholar 

  3. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967), ibid. 27, 1688 (1971); A. Salam, in Elementary Particle Theory: Relativis-tic Groups and Analyticity (Nobel Sjnnposium No. 8), ed. N. Svartholm ( Wiley, New York, 1969 ).

    Google Scholar 

  4. S. Weinberg, Phys. Rev. Lett. 36, 291 (1976); M. Veltman, Phys. Rev. 70B, 253 (1977).

    Google Scholar 

  5. R. Gatto and G. Sartori, Phys. Lett. 67B, 467 (1977); C.W. Kim and J. Kim, Phys. Lett. 79B, 278 (1978).

    Google Scholar 

  6. M. Turner, Neutrinos and Cosmology, Proc. of Weak Interactions as Probes of Unification, ed. G. B. Collins et al., AIPCP # ( AIP, New York, 1981 ), p. 335.

    Google Scholar 

  7. A. De Rujula, H. Georgi and S. L. Glashow, Phys. Rev. D 12, 147 (1975),

    Google Scholar 

  8. See R. E. Marshak, Riazuddin and C. P. Ryan, Theory of Weak Interactions in Particle Physics ( Wiley, New York, 1969 ).

    Google Scholar 

  9. S. Berman, Phys. Rev. Lett. 1, 468 (1958).

    Google Scholar 

  10. T. Kinoshita, Phys. Rev. Lett. 2, 477 (1959).

    Google Scholar 

  11. T. Goldman and W. Wilson, Phys. Rev. D15, 709 U977 ).

    Google Scholar 

  12. W. Marciano and S. Sirlin, Phys. Rev. Lett. 36, 1425 (1976).

    Google Scholar 

  13. R. E. Shrock, Phys. Lett. 96B, 159 (1980). See also B. W. Lee and R. E. Shrock, Phys. Rev. Dl6, 1444 (1977); D. Bailin and N. Dombey, Phys. Lett. 64B, 304 (1976).

    Google Scholar 

  14. J. F. Donoghue and L.-F. Li, Phys. Rev. Dl9, 945 (1979). See also B. McWilliams and L.-F. Li, Carnegie-Mellon preprint COO-30660146 (1980).

    Google Scholar 

  15. H. E. Haber, G. L. Kane and T. Sterling, Nucl. Phys. B161, 493 (1979).

    Google Scholar 

  16. T. Fazzini, G. Fidecaro, A. W. Merrison, H. Paul and A. V. Tollestrup, Phys. Rev. Lett. 1, 247 (1958); G. Impeduglia, R. Piano, A. Prodell, N. Samios, M. Schwartz and J. Steinberger, Phys. Rev. Lett, l, 249 (1958).

    Google Scholar 

  17. H. L. Anderson, T. Fujii, R. H. Miller and L. Tau, Phys. Rev. 119, 2050 (1960).

    Google Scholar 

  18. E. Di Capua, R. Garland, L. Pondrom and A. Strellzoff, Phys. Rev. 133, B1333 (1964).

    Google Scholar 

  19. D. Bryman and C. E. Picciotto, Phys. Rev. D11, 1337 (1975).

    Google Scholar 

  20. D. Bryman, M. S. Dixit, R. Dubois, J.-M. Poutissou, A. Olin, B. Olaniyi, D. Berghofer and B.C. Robertson, TRIUMF proposal 52.

    Google Scholar 

  21. T. Harper, T. Inouye and N. C. Rasmussen, GAMANL, A Computer Program Applying Fourier Transforms to the Analysis of Gamma Spectral Data, MIT preprint 3944–2.

    Google Scholar 

  22. K. Heard et al., Phys. Lett. 55B, 327 (1975); J. Heintze et al., Phys. Lett. 60B, 302 (1976).

    ADS  Google Scholar 

  23. See S. M. Bilenky and B. Pontecorvo, Phys. Reports 41C, 276 (1978).

    Google Scholar 

  24. R. E. Marshak, Riazuddin and R. N. Mohaptra, TRIUMF report TRI-81-1 (1981).

    Google Scholar 

  25. G. Altarelli, L. Baulieu, N. Cabibbo, L. Mainai and R. Petronzio, Nucl. Phys. B125, 285 (1977).

    Google Scholar 

  26. J. D. Bjorken and S. Weinberg, Phys. Rev. Lett. 38, 622 (1977).

    Google Scholar 

  27. O. Shankar, TRIUMF preprint TRI-PP-80-32 (1980).

    Google Scholar 

  28. A. Badertscher et al.. Nuovo Cimento 401 (1980).

    Google Scholar 

  29. D. Bryman, C. K. Hargrove et al., TRIUMF proposai 104.

    Google Scholar 

  30. D. Bowman, C. M. Hoffman et al., LAMPF proposals 400, 455.

    Google Scholar 

  31. W. Berti et al., SIN Report #3, April 1981.

    Google Scholar 

  32. D. Nygren et al.. Proposai for a PEP Facility based on a time projection chamber.

    Google Scholar 

  33. D. Bryman and C. Picciotto, Rev. Mod. Phys. 50, 11 (1978).

    Google Scholar 

  34. J. D. Vergados, loannina preprint 149 (1980).

    Google Scholar 

  35. H. Primakoff and S. P. Rosen, to be published.

    Google Scholar 

  36. E. Fiorini, CERN/EP/PHYS 78–33.

    Google Scholar 

  37. T. Kirsten, O. A. Schaeffer, E. Norton and R. W. Stoenner, Phys. Rev. Lett. 20, 1300 (1968).

    Article  ADS  Google Scholar 

  38. E. W. Hennecke, O. K. Manuel and D. D. Sabu, Phys. Rev. C11, 1378 (1975).

    ADS  Google Scholar 

  39. B. Srinivasan et al. Economic Geology 67, 592 (1972).

    Article  Google Scholar 

  40. H. Primakoff and S. P. Rosen, Phys. Rev. 184, 1925 (1969).

    Article  ADS  Google Scholar 

  41. J. D. Vergados, Phys. Rev. C13, 865 (1976).

    ADS  Google Scholar 

  42. W. C. Haxton, G. J. Stephenson and D. Strottman, Phys. Rev. Lett. 47, 153 (1981).

    Article  ADS  Google Scholar 

  43. S. P. Rosen, Purdue University preprint (1981).

    Google Scholar 

  44. M. Doi et al., Osaka preprints OS-GE-80-27, 81-28, 81-29.

    Google Scholar 

  45. B. T. Cleveland, W. R. Leo, C. S. Wu, L. R. Kasday, A. M. Rushton, P. J. Gollon and J. D. Ullman, Phys. Rev. Lett. 35, 757 (1975).

    Article  ADS  Google Scholar 

  46. Yu. G. Zdesenko, JETP Lett. 32, 58 (1980).

    ADS  Google Scholar 

  47. M. K. Moe and D. D. Lowenthal, Phys. Rev. C22, 2186 (1980).

    ADS  Google Scholar 

  48. V. A. Lubimov, E. G. Novikov, V. Z. Nozik, E. F. Tretyokov and V. S. Kosik, Phys. Lett. 94B, 266 (1980).

    ADS  Google Scholar 

  49. L. Wolfenstein, Carnegie-Mellon preprint 3066–180 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Bryman, D.A. (1983). Aspects of the Lepton Generation Puzzle. In: Capri, A.Z., Kamal, A.N. (eds) Particles and Fields 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3593-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3593-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3595-5

  • Online ISBN: 978-1-4613-3593-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics