Skip to main content

Numerical Methods for Asymptotic Solutions of Scattering Equations

  • Chapter
Atoms in Astrophysics
  • 118 Accesses

Abstract

The focus of our discussion is illustrated by Fig. 1, in which the radial extent of the scattering problem is divided into several regions a la Inokuti.(1) Inner Regia is the domain of hardy and resourceful individuals who are trained from birth to cope with such scourges as correlation and exchange. Outer Regia, in contrast, is a gentler clime of local potentials that are more easily controlled by its residents. These two kingdoms are so different that the rough folk of Inner Regia and the gentle folk of Outer Regia are forbidden to interact except at their common border.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Inokuti, Comments At. Mol. Phys. 10, 99–106 (1981).

    Google Scholar 

  2. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, U.S. Department of Commerce, National Bureau of Standards Applied Mathematics Series 55 (1965).

    Google Scholar 

  3. R. G. Gordon, Chem. Phys. 51, 14–25 (1969).

    MathSciNet  ADS  Google Scholar 

  4. D. Secrest, in Methods in Computational Physics, Vol. 10, B. Alder, S. Fernbach, and M. Rotenburg, Eds., pp. 243–286, Academic, New York, 1971.

    Google Scholar 

  5. R. W. White and E. F. Hayes, J. Chem. Phys. 57, 2985–2993 (1972).

    Article  ADS  Google Scholar 

  6. W. Eastes and D. Secrest, J. Chem. Phys. 56, 640–649 (1972).

    Article  ADS  Google Scholar 

  7. M. A. Morrison, N. F. Lane, and L. A. Collins, Phys. Rev. A 15, 2186–2201 (1977).

    Article  ADS  Google Scholar 

  8. M. J. Seaton, J. Phys. B 7, 1817–1840 (1974).

    Article  ADS  Google Scholar 

  9. D. W. Norcross and M. J. Seaton, J. Phys. B 6, 614–621 (1973).

    Article  ADS  Google Scholar 

  10. L. D. Thomas, M. H. Alexander, B. R. Johnson, W. A. Lester, Jr., J. C. Light, K. D. McLenithan, G. A. Parker, M. J. Redmon, T. G. Schmalz, D. Secrest, and R. B. Walker, J. Comput. Phys. 41, 407–426 (1981).

    Article  ADS  MATH  Google Scholar 

  11. D. W. Norcross, J. Phys. B 4, 1458–1475 (1971).

    Article  ADS  Google Scholar 

  12. L. Fox, The Numerical Solution of Two-Point Boundary-Value Problems in Ordinary Differential Equations, Oxford University Press, London, 1957.

    Google Scholar 

  13. K. Berrington and M. Crees, Comput. Phys. Commun. 17, 181–205 (1979).

    Article  ADS  Google Scholar 

  14. P. G. Burke, A. Hibbert, and W. D. Robb, J. Phys. B 4, 153–166 (1971).

    Article  ADS  Google Scholar 

  15. D. W. Norcross, Comput. Phys. Commun. 1, 88–96 (1969).

    Article  ADS  Google Scholar 

  16. A. T. Chivers, Comput. Phys. Commun. 5, 416–429 (1973).

    Article  ADS  Google Scholar 

  17. M. A. Crees, Comput. Phys. Commun. 19, 103–137 (1980).

    Article  ADS  Google Scholar 

  18. M. A. Crees, Comput. Phys. Commun. 23, 181–198 (1981).

    Article  ADS  Google Scholar 

  19. D. W. Norcross, Comput. Phys. Commun. 6, 257–264 (1973).

    Article  ADS  Google Scholar 

  20. F. Calogero, Variable Phase Approach to Potential Scattering, Academic, New York, 1967.

    MATH  Google Scholar 

  21. C. Zemach, Nuovo Cimento 33, 939–947 (1964).

    Article  MathSciNet  Google Scholar 

  22. J. J. Matese and R. J. W. Henry, Phys. Rev. A 5, 222–226 (1972).

    Article  ADS  Google Scholar 

  23. M. LeDourneuf and Vo Ky Lan, J. Phys. B. 10, L35–42 (1977).

    Article  ADS  Google Scholar 

  24. E. R. Smith and R. J. W. Henry, Phys. Rev. A 7, 1585–1590 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  25. W. N. Sams and D. J. Kouri, J. Chem. Phys. 51, 4309–4314 (1969).

    Article  MathSciNet  Google Scholar 

  26. A. R. Barnett, D. H. Feng, J. W. Steed, and L. J. B. Goldfarb, Comput. Phys. Commun. 8, 377–395 (1974).

    Article  ADS  Google Scholar 

  27. S. P. Rountree, T. Burnett, and R. J. W. Henry, Comput. Phys. Commun. 11, 27–35 (1976).

    Article  ADS  Google Scholar 

  28. M. J. Seaton, Comput. Phys. Commun. 25, 87–95 (1982).

    Article  ADS  Google Scholar 

  29. R. J. W. Henry, S. P. Rountree, and E. R. Smith, Comput. Phys. Commun. 23, 233–273 (1981).

    Article  ADS  Google Scholar 

  30. E. R. Smith, J. Comput. Phys. 18, 201–223 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  31. P. G. Burke and H. M. Schey, Phys. Rev. 126, 147–162 (1962).

    Article  ADS  Google Scholar 

  32. P. G. Burke, D. D. McVicar, and K. Smith, Proc. Phys. Soc. 83, 397–407 (1964).

    Article  ADS  Google Scholar 

  33. M. Gailitis, J. Phys. B 9, 843–854 (1976).

    Article  ADS  Google Scholar 

  34. M. J. Seaton, Proc. Phys. Soc. 77, 174–183 (1961).

    Article  ADS  Google Scholar 

  35. S. Wantanabe and C. H. Green, Phys. Rev. A 22 158–169 (1980).

    Article  ADS  Google Scholar 

  36. D. R. Bates and M. J. Seaton, Mon. Not. R. Astron. Soc. 109, 698–704 (1949).

    ADS  Google Scholar 

  37. M. J. Seaton and G. Peach, Proc. Phys. Soc. 79, 1296–1297 (1962).

    Article  ADS  MATH  Google Scholar 

  38. A. Burgess, Proc. Phys. Soc. 81, 442–452 (1963).

    Article  ADS  Google Scholar 

  39. P. de A. Martins, J. Phys. B 1, 154–162 (1968).

    Article  ADS  Google Scholar 

  40. F. H. M. Faisal, J. Phys. B 1, 181–194 (1968).

    Article  ADS  Google Scholar 

  41. D. W. Norcross and M. J. Seaton, J. Phys. B 2 731–739 (1969).

    Article  ADS  Google Scholar 

  42. D. L. Knirk, J. Chem. Phys. 57, 4782–4788 (1972).

    Article  ADS  Google Scholar 

  43. J. Belling, J. Phys. B 1, 136–138 (1968).

    Article  Google Scholar 

  44. N. C. Sil, M. A. Crees, and M. J. Seaton, J. Phys. B., in press.

    Google Scholar 

  45. P. G. Burke and M. J. Seaton, in Methods in Computational Physics, Vol. 10, B. Alder, S. Fernbach, and M. Rotenburg, Eds., pp. 1–80, Academic, New York, 1971.

    Google Scholar 

  46. J. C. Light and R. B. Walker, J. Chem. Phys. 65, 4272–4282 (1976).

    Article  ADS  Google Scholar 

  47. L. A. Collins and B. I. Schneider, Phys. Rev. A 24, 2387–2401 (1981).

    Article  ADS  Google Scholar 

  48. K. L. Baluja, P. G. Burke, and L. A. Morgan, Comput. Phys. Commun., in press.

    Google Scholar 

  49. J. P. Croskery, N. S. Scott, K. L. Bell, and K. A. Berrington, Comput. Phys. Commun., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Norcross, D.W. (1983). Numerical Methods for Asymptotic Solutions of Scattering Equations. In: Burke, P.G., Eissner, W.B., Hummer, D.G., Percival, I.C. (eds) Atoms in Astrophysics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3536-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3536-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3538-2

  • Online ISBN: 978-1-4613-3536-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics