Skip to main content

Polyploidy and Domestication: The Origin and Survival of Polyploids in Cytotype Mixtures

  • Chapter
Polyploidy

Part of the book series: Basic Life Sciences ((BLSC,volume 13))

Abstract

Mixtures of cytotypes occur in nature and are grown by man. Such mixtures are often cultivated as a landrace, i.e., the farmer does not pay any attention to the types he is growing, or, if he does, he only carries out a mild selection pressure. Of course, he is not aware of cytotypes. For example, farmers in Ethiopia grow a mixture of hexaploid bread wheat and tetraploid durum wheat. Owing to gene exchange both the cytotypes resemble each other (1), and therefore the crop is “sown as mixtures, grown as mixtures, reaped as mixtures, threshed and milled as mixtures, baked and brewed as mixtures” (1) and stored as mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, E., 1961, The analysis of variation in cultivated plants with special reference to introgression. Euphytica 10: 79–86.

    Article  Google Scholar 

  2. Ramanna, M.S., personal communications, 1978/1979.

    Google Scholar 

  3. Levan, A., 1945, The present state of plant breeding by induction of Polyploidy. Sveriges Utsädes-förenings Tidskrift 55: 109–143.

    Google Scholar 

  4. Jain, S.K., 1976, The evolution of inbreeding in plants. Ann. Rev. Ecol. Syst. 7: 469–475.

    Article  Google Scholar 

  5. Huskins, C.L., 1930, The origin of Spartina townsendii. Genetica 12: 531–538.

    Article  Google Scholar 

  6. Gymer, P.T., Whittington, 1973, Hybrids between Lolium perenne L. and Festuca pratensis Huds. 1. Crossing and incompatibility. New Phytol. 72: 411–424.

    Google Scholar 

  7. Wit, F., 1964, Natural and experimental hybrids of ryegrasses and meadow fescue. Euphytica 13: 294–304.

    Article  Google Scholar 

  8. Whittington, W.J., Hill, J., 1961, Growth studies on natural hybrids between Lolium perenne and Festuca pratensis. J. Expl. Bot. 12: 330–340.

    Article  Google Scholar 

  9. Gymer, P.T., Whittington, W.J., 1973, Hybrids between Lolium perenne and Festuca pratensis. 2. Comparative morphology. New Phytol. 72: 861–865.

    Article  Google Scholar 

  10. Gymer, P.T., Whittington, W.J., 1976, Factors influencing the proportion of natural hybrids between Lolium perenne L. and Festuca pratensis Huds. in permanent pastures. J. Grassland Soc. 31: 165–169.

    Article  Google Scholar 

  11. Bingham, E.T., Saunders, J.W., 1974, Chromosome manipulations in alfalfa: scaling the cultivated tetraploid to seven ploidy levels. Crop Sci. 14: 474–477.

    Article  Google Scholar 

  12. Bingham, E.T., Gillies, C.B., 1971, Chromosome pairing, fertility, and crossing behavior of haploids of tetraploid alfalfa, Medicago sativa L. Canad. J. Genet. Cytol. 13: 195–202.

    Google Scholar 

  13. Dunbier, N.W., Eskew, D.L., Bingham, E.T., Schräder, L.E., 1975, Performance of genetically comparable diploid and tetraploid alfalfa: agronomic and physiological parameters. Crop Sci. 15: 211–214.

    Article  Google Scholar 

  14. Heiser, Ch. B., Smith, D.M., 1960, The origin of Helianthus multiflorus. Amer. J. Bot. 47: 860–865.

    Google Scholar 

  15. Li., H.L., 1956, The story of the cultivated horse- chestnuts. Morris Arb. Bull. 7: 35–39.

    Google Scholar 

  16. Ottaro, W.C.M., 1977, The relationship between the ploidy level and certain morphological characteristics of Chrysanthemum cinerariaefolium Vis. Pyrethrum Post 14 (1): 10–11.

    Google Scholar 

  17. Parlevliet, J.E., 1979, Collecting pyrethrum in Yugoslavia for Kenya, pp. 91–96, in Zeven, A.C., van Harten, A.M., (eds.), “Broadening the Genetic Base of Crops Proc. Conference,” and personal communication.

    Google Scholar 

  18. Müntzing, A., 1936, The chromosomes of a giant Populus tremula. Hereditas 21: 383–393.

    Article  Google Scholar 

  19. Darlington, C.D., Hair, J.B., Hurcombe, R., 1951, The history of the garden Hyacinthus. Heredity 5: 233–252.

    Article  Google Scholar 

  20. Kroon, G.H., van Eijk, J.P., 1977, Polyploidy in tulips (Tulipa L.); the occurrence of diploid gametes. Euphytica 26: 63–66.

    Article  Google Scholar 

  21. de Mol, W.E., 1923, The disappearance of the diploid and triploid Magnicoronatae narcissi from the larger cultures and the appearance in their place of tetraploid forms. Kon. Akad. Amsterdam. Proc. Sect. Sci. 25: 216–220.

    Google Scholar 

  22. Wylie, A.P., 1952, The history of the garden narcissi. Heredity 6: 137–156.

    Article  Google Scholar 

  23. Austin, D.F., 1977, Hybrid polyploids in Ipomoea section Batatas. J. Heredity 68: 259 - 260.

    Google Scholar 

  24. Nishiyama, I., Miyazaki, T., Sakamoto, S., 1975, Evolutionary autoploidy in the sweet potato (Ipomoea batatas (L.) Lam.) and its progenitors. Euphytica 24: 197–208.

    Article  Google Scholar 

  25. Austin, D.F., 1978, The Ipomoea batatas complex. I. Taxonomy. Bull. Torrey Bot. Club 105: 114–129.

    Article  Google Scholar 

  26. Jackson, M.T., 1975, The evolutionary significance of the triploid cultivated potato, Solanum x chaucha Juz. amp; Buk. PhD thesis. University of Birmingham, 191 p. and appendices.

    Google Scholar 

  27. Hawkes, J.G., 1962, The origin of Solanum juzepczukii Buk, and S. cutilobum Juz. and Buk. Zeitsehr. Pflanzenz. 47: 1–14.

    Google Scholar 

  28. Rowe, P.R., 1967, Performance of diploid and vegetatively doubled clones of phureja-haploid tuberosum hybrids. Amer. Potato J. 44: 195–203.

    Article  Google Scholar 

  29. Rowe, P.R., 1967, Performance and variability of diploid and tetraploid families. Amer. Potato J. 44: 263–271.

    Article  Google Scholar 

  30. Zubeldia Lizarduy, A., Lopez Campos, G., Sanudo Pazaluelos, A., 1955, Estudio descripcion y classificacion de un grupo de variedades primitivas de patata cultivades en los Isles Canarias. Bol. Inst. Invest. Agron. Madrid 15: 287–325.

    Google Scholar 

  31. Ugent, D., 1967, Morphological variation in Solanum x edinense, a hybrid of the common potato. Evolution 21: 696–712.

    Article  Google Scholar 

  32. Ugent, D., 1968, The potato in Mexico: geography and primitive culture. Econ. Bot. 22: 108–123.

    Article  Google Scholar 

  33. Zeven, A.C., 1979, The prehistoric spread of bread wheat into Asia, pt. I: 103–107, Proc. 5th Inter. Wheat Genetics Symp., New Delhi.

    Google Scholar 

  34. Zeven, A.C. The spread of bread wheat over the Old World since the Neolithicum as indicated by their genotypes for hybrid necrosis (in preparation).

    Google Scholar 

  35. van Zeist, W., 1968, Prehistoric and early historic food plants in the Netherlands. Palaeohistoria (publ. 1970 ): 41–72.

    Google Scholar 

  36. Klages, K.H.W., 1936, Changes in the proportion of the components of seeded and harvested cereal mixtures in abnormal seasons. J. Amer. Soc. Agron. 28: 935–940.

    Article  Google Scholar 

  37. Levin, D.A., 1975, Minority cytotype exclusion in local plant populations. Taxon 24: 35–43.

    Article  Google Scholar 

  38. Hagberg, A., Ellerström, S., 1959, The competition between diploid, tetraploid and aneuploid rye. Theoretical and practical aspects. Hereditas 45: 369–416.

    Article  Google Scholar 

  39. Cavanah, J.A., Alexander, D.E., 1963, Survival of tetraploid maize in mixed 2n-4n plantings. Crop Sci. 3: 329–331.

    Article  Google Scholar 

  40. Sakai, K.-I., 1955, Competition in plants and its relation to selection. Cold Spring Harbor Symp. Quant. Biology 20: 137–157.

    CAS  Google Scholar 

  41. Linde-Laursen, I., Siddiqui, K.A., 1974, Triploidy and aneuploidy in virus infected wheat, Triticum aestivum. Hereditas 76: 152–154.

    Article  PubMed  CAS  Google Scholar 

  42. Sandfaer, J., 1979, Frequency of aneuploids in progenies of autotriploid barley, Hordeum vulgare L. Hereditas 90: 213–217.

    Article  Google Scholar 

  43. Sanfaer, J., 1979, The influence of different strains of barley stripe mosaic virus on the frequency of triploids and aneuploids in barley. Phytopath. Zeitschrift (in press).

    Google Scholar 

  44. Rykova, R.P., 1977, (Depolyploidization in induced autotetraploid flax). Bull. Vses, Ord. Lenina no. 69:34–38. From PI. Breeding Abstr. 48 (1978): 10796.

    Google Scholar 

  45. Norrington-Davies, J., Harries, J.H., 1977, Competition studies in diploid and tetraploid varieties of Lolium perenne.1. The influence of density and proportion of sowing. J. Agric. Sci. Cambridge 88: 405–410.

    Article  Google Scholar 

  46. Harries, J.H., Norrington-Davies, J., 1977, Competition studies in diploid and tetraploid varieties of Lolium perenne. 2. The inhibition of germination. J. Agric. Sci. Cambridge 88: 411–415.

    Article  Google Scholar 

  47. van Dijk, G.E., personal communication, March 1978.

    Google Scholar 

  48. Ahloowalia, B.S., 1971, Frequency, origin and survival of aneuploids in tetraploid ryegrass. Genetica 42: 129–138.

    Article  Google Scholar 

  49. Nagata T., Okabe, T., 1978, Frequency of aneuploids in autotetraploid populations of Italian ryegrass (Lolium multiflorum Lam.). Jap. J. Breeding 28: 205–210.

    Google Scholar 

  50. Svab, J., 1966, Ueber die genetische Stabilität anisoploider Zuckerrilbensorten. Zeitschr. Pflanzenz. 55: 241–259.

    Google Scholar 

  51. Svab, J., 1973, Population-genetical aspects of variety maintenance, pp. 89–93, Proc. First Meeting Section Biometrics in Plant Breeding of Eucarpia.

    Google Scholar 

  52. Pohlheim, F., 1968, Thuja gigantea gracilis Beissn. - ein Haplont unter den Gymnospermen. Biologische Rundschau 6: 84–86.

    Google Scholar 

  53. Daker, M.G., 1966, ‘Kleiner Liebling’, a haploid cultivar of Pelargonium, Nature 211: 549–550.

    Google Scholar 

  54. Pohlheim, 1972, Untersuchungen zur Sprossvariation der Cupressacea 4. Zur Auslese von Mutations-Chimären und mutanten der Haploiden. Thuja gigantea gracilis. Arch. Zuchtungs- forsch. 2: 223–235.

    Google Scholar 

  55. Zeven, A.C., 1977, Domesticatie en evolutie van de cultuurplanten. Course, Institute of Plant Breeding, Agricultural University, Wageningen, 206 p. (mimeographed).

    Google Scholar 

  56. Swaminathan, M.S., 1958, The origin of early European potato-evidence from Indian varieties. Indian J. Genet. PI. Breeding 18: 8–15.

    Google Scholar 

  57. van der Plank, J.E., 1946, Origin of the first European potatoes and their reaction to length of day. Nature 157: 503–505.

    Article  Google Scholar 

  58. Brücher, H., 1966, Wildkartoffeln in Afrika. Zeitschr. Pflanzenz. 16: 147–163.

    Google Scholar 

  59. Garcia-Olmedo, F., Carbonera, P., Aragoncillo, C., Salcedo, G., 1978, Loss of redundant gene expression after polyploidization in plants. Experientia 34: 332–333.

    Article  Google Scholar 

  60. Albuzio, A., Spettoli, P., Cacco, G., 1978, Changes in gene expression of diploid and autotetraploid status of Lycopersicon esculentum. Physiol. PI. 44: 77–80.

    Article  CAS  Google Scholar 

  61. Dhaliwal, G.C., 1977, Origin of Triticum monococcum. Wheat Information Service 44: 14–17.

    Google Scholar 

  62. Allard, R.W., Kahler, A.L., 1972, Patterns of molecular variation in plant populations. Proc. Sixth Berkeley Symp. on Mathematical Statistics and Probability 5: 237–254.

    Google Scholar 

  63. Simmonds, N.W., 1976, Sugarcanes, pp. 104–108, in Simmonds, N.W. (ed.), “Evolution of Crop Plants,” Longman, London amp; New York.

    Google Scholar 

  64. Yen, D.E., Wheeler, J.M., 1968, Introduction of taro into the Pacific: the indications of the chromosome numbers. Ethnology 7: 259–267.

    Article  Google Scholar 

  65. Plucknett, D.L., 1976, Edible aroids, pp. 10–12, in Simmonds, N.W. (ed.), “Evolution of Crop Plants,” Longman, London amp; New York.

    Google Scholar 

  66. Simmonds, N.W., 1976, Bananas, pp. 211–215, in Simmonds, N.W. (ed.), “Evolution of Crop Plants,” Longman, London amp; New York.

    Google Scholar 

  67. Barber, H.N., Driscoll, C.J., Long, P.M., Vickery, R.S., 1969, Gene similarity of the Triticinae and the study of segmental interchanges. Nature 221: 897–898.

    Article  Google Scholar 

  68. Hart, G.E., Langston, P.J., 1977, Chromosomal location and evolution of isozyme structural genes in hexaploid wheat. Heredity 39: 263–277.

    Article  CAS  Google Scholar 

  69. Adams, W.T., Allard, R.W., 1977, Effect of polyploid on phosphoglucose isomerase diversity in Festuca microstachys. Proc. Nat. Acad. Sci. USA 74: 1652–1656.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Zeven, A.C. (1980). Polyploidy and Domestication: The Origin and Survival of Polyploids in Cytotype Mixtures. In: Lewis, W.H. (eds) Polyploidy. Basic Life Sciences, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3069-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3069-1_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3071-4

  • Online ISBN: 978-1-4613-3069-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics