Skip to main content

Inelastic Scattering Cross Sections I: Theory

  • Chapter
Atom - Molecule Collision Theory

Abstract

Inelastic scattering is characterized by a change in the internal state of one or both collision partners, but with no change in their chemical identities. Thus electronic, vibrational, and rotational excitation and de-excitation are inelastic events, whereas chemical reactions, charge transfer, ionization, and dissociation would be characterized as reactive events. One may also include collisions which change the orientations of the partners (Δm ǂ 0), but do not change the energy state. In the following section and the next three chapters the theory of inelastic collisions of various types is given in considerable detail. In this section we shall define the relations between observables and the theoretical quantities, outline the general quantum theory of such processes and three practical (for small systems) quantum approaches, and give a brief overview of some of the alternative approximate approaches which are given in greater detail in later chapters. There are, of course, many reviews and books covering inelastic scattering; some are given in References 1–7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.D. Levine, Quantum Mechanics of Molecular Rate Processes, Oxford University Press, London,1969.

    Google Scholar 

  2. B. Alder, S. Fernbach, and M. Rotenberg, editors, Atomic and Molecular Scattering (Volume 10 of Methods of Computational Physics), Academic Press, New York (1971).

    Google Scholar 

  3. M.S. Child, Molecular Collision Theory, Academic Press, New York (1974).

    Google Scholar 

  4. D. Secrest, Theory of rotational and vibrational energy transfer in molecules, Ann. Rev. Phys. Chem. 24, 379 (1973).

    Article  CAS  Google Scholar 

  5. T.F. George and J. Ross, Quantum dynamical theory of molecular collisions, Ann. Rev. Phys. Chem. 24, 263 (1973).

    Article  CAS  Google Scholar 

  6. W.H. Miller, editor, Dynamics of Molecular Collision, Parts A and B (Volumes 1 and 2 of Modern Theoretical Chemistry), Plenum Press, New York (1976).

    Google Scholar 

  7. R.G. Newton, Scattering Theory of Waves and Particles, McGraw-Hill, New York (1966).

    Google Scholar 

  8. Ch. Schlier, editor, Molecular Beams and Reaction Kinetics, Proceedings of the International School of Physics “Enrico Fermi,” Academic Press, New York (1970).

    Google Scholar 

  9. R.D. Levine and R.B. Bernstein, Molecular Reaction Dynamics, Oxford University Press, New York (1974).

    Google Scholar 

  10. J. Ross, editor, Molecular Beams, Advances in Chemical Physics, Vol. 10, Interscience, New York (1966).

    Google Scholar 

  11. J. Light, J. Ross and K. Shuler, Rate coefficients, reaction cross sections, and microscopic reversibility, in Kinetic Processes in Gases and Plasmas, A. Hochstim, editor, Academic Press, New York (1969).

    Google Scholar 

  12. R.D. Levine and R.B. Bernstein, Energy disposal and energy consumption in elementary chemical reactions: The information theoretic approach, Acc. Chem. Res. 7, 393 (1974).

    Article  CAS  Google Scholar 

  13. M.J. Berry, Laser studies of gas phase chemical reaction dynamics, Ann. Rev. Phys. Chem. 26, 259 (1975).

    Article  CAS  Google Scholar 

  14. A.M. Arthurs and A. Dalgarno, The theory of scattering by a rigid rotator, Proc. R. Soc. London A256, 540 (1960).

    Article  Google Scholar 

  15. M.H. Alexander and A. DePristo, Symmetry considerations in the quantum treatment of collision between two diatomic molecules, J. Chem. Phys. 66, 2166 (1977).

    Article  CAS  Google Scholar 

  16. D. Secrest, Amplitude densities in molecular scattering, Methods Comput. Phys. 10, 243 (1971).

    CAS  Google Scholar 

  17. D. Secrest and W. Eastes, Calculation of rotational and vibrational transitions for the collision of an atom with a rotating vibrating diatomic oscillator, J. Chem. Phys. 56, 640 (1969).

    Google Scholar 

  18. W.A. Lester and R.B. Bernstein, Computational procedure for the close-coupled rotational excitation problem: Scattering of diatomic molecules by atoms, J. Chem. Phys. 48,4896(1968).

    Google Scholar 

  19. K. Takayanagi, Vibrational and rotational transitions in molecular collisions, Progr. Theor. Phys. Supp. 25, 1 (1963).

    Article  Google Scholar 

  20. A.S. Davydov, Quantum Mechanics, Pergamon Press, New York (1965).

    Google Scholar 

  21. A. Messiah, Quantum Mechanics, J. Wiley & Sons, New York (1962).

    Google Scholar 

  22. K. Takayanagi, The production of rotational and vibrational transitions in encounters between molecules, Adv. At. Mol. Phys. 1, 149 (1965).

    Article  Google Scholar 

  23. W.A. Lester, The N-coupled channel problem, in Dynamics of Molecular Collisions, Part B (Volume 2 of Modern Theoretical Chemistry), W.H. Miller, editor, Plenum Press, New York (1976), Chapter 1.

    Google Scholar 

  24. M.E. Rose, Elementary Theory of Angular Momentum, J. Wiley & Sons, New York (1957).

    Google Scholar 

  25. J. Light and R.B. Walker, R-matrix solution of coupled equations for inelastic scattering, J. Chem. Phys. 65, 4272 (1976)

    Google Scholar 

  26. E.B. Stechel, R.B. Walker, and J.C. Light, J. Chem. Phys. (1978), in press.

    Google Scholar 

  27. A.M. Lane and R.G. Thomas, R-matrix theory of nuclear reactions, Rev. Mod. Phys. 30, 257 (1958).

    Google Scholar 

  28. D.J. Zvijac and J.C. Light, R-matrix theory for collinear chemical reactions, Chem. Phys. 12, 237 (1976).

    Article  CAS  Google Scholar 

  29. W.N. Sams and D.J. Kouri, Noniterative solutions of integral equations for scattering. II. Coupled channels, J. Chem. Phys. 51, 4815 (1969).

    Article  CAS  Google Scholar 

  30. R.A. White and E.F. Hayes, Quantum mechanical studies of the vibrational excitation of H2 by Li+, Chem. Phys. 57, 2985 (1972).

    CAS  Google Scholar 

  31. E.P. Wigner and L. Eisenbud, Higher angular momenta and long range interaction in resonance reactions, Phys. Rev. 72, 29 (1947).

    Article  CAS  Google Scholar 

  32. P.J.A. Buttle, Solution of coupled equations by R-matrix techniques, Phys. Rev. 160, 179 (1967).

    Google Scholar 

  33. C. Bloch, Une formulation unifiée de la théorie des réactions nucléaires, Nucl. Phys. 4, 503 (1957).

    Article  Google Scholar 

  34. P.G. Burke, A. Hibbert, and W.D. Robb, Electron scattering by complex atoms, J. Phys. B: At. Mol. Phys. 4, 153 (1971).

    Article  CAS  Google Scholar 

  35. E.J. Heller, R-matrix approach to collinear inelastic collisions: Resonances, Chem. Phys. Lett. 23, 102 (1973).

    Article  Google Scholar 

  36. D.J. Zvijac, E.J. Heller, and J.C. Light, Variational correction to Wigner R-matrix theory of scattering, J. Phys. B: At. Molec. Phys. 8, 1016 (1975).

    Article  CAS  Google Scholar 

  37. F.M. Chapman, Jr., and E.F. Hayes, Open and closed channel resonances in the collinear inelastic scattering of He by H2, 65, 1032 (1976)

    Google Scholar 

  38. Resonances in collinear inelastic scattering of He by H2 below reaction threshold, J. Chem. Phys. 62, 4400 (1975).

    Google Scholar 

  39. See R.G. Gordon, Quantum scattering using piecewise analytic solutions, Methods Comput. Phys. 10, 81 (1971).

    Google Scholar 

  40. R.G. Gordon, New method for constructing wavefunctions for bound states and scattering, J. Chem. Phys. 51, 14 (1969).

    Article  CAS  Google Scholar 

  41. D. Truhlar, Algebraic variational methods in scattering theory, in Advances in Chemical Physics, Vol. 25, I. Prigogine and S. Rice, editors, J. Wiley & Sons, New York (1974), pp. 211–293.

    Chapter  Google Scholar 

  42. H. Rabitz, Effective Hamiltonians in molecular collisions, in Dynamics of Molecular Collisions, Part A (Volume 1 of Modern Theoretical Chemistry), W.H. Miller, editor, Plenum Press, New York (1976), pp. 33–80.

    Google Scholar 

  43. P. McGuire and D.J. Kouri, Quantum mechanical close coupling approach to molecular collisions j z-conserving coupled states approximation, J. Chem. Phys. 60, 2488 (1974).

    Article  CAS  Google Scholar 

  44. R.T. Pack, Space-fixed vs body-fixed axes in atom-diatomic molecular scattering. Sudden approximations, J. Chem. Phys. 60, 633 (1974).

    Article  CAS  Google Scholar 

  45. A.E. DePristo and M.H. Alexander, A decoupled I-dominant approximation for ion- molecule and atom-molecule collisions, J. Chem. Phys. 64, 3009 (1976).

    Article  CAS  Google Scholar 

  46. A.E. DePristo and M.H. Alexander, Rotationally inelastic scattering of two HF molecules, J. Chem. Phys. 66, 1334 (1977).

    Article  CAS  Google Scholar 

  47. H. Rabitz, The dimensionality and choice of effective Hamiltonians for molecular collisions, J. Chem. Phys. 63, 5208 (1975)

    Article  CAS  Google Scholar 

  48. Effective potentials in molecular collisions, J. Chem. Phys. 57, 1718 (1972).

    Article  Google Scholar 

  49. R.D. Levine, in MTP International Review of Science, Physical Chemistry, Series One, Vol. 1, W. Byers-Brown, editor, University Park Press, Baltimore (1972), p. 229.

    Google Scholar 

  50. H.K. Shin, Vibrational energy transfer, in Dynamics of Molecular Collisions, Part A (Volume 1 of Modern Theoretical Chemistry), W.H. Miller, editor, Plenum Press, New York (1976), pp. 131–210.

    Google Scholar 

  51. R.N. Porter and L.M. Raff, Classical trajectory methods in molecular collisions, in Dynamics of Molecular Collisions, Part B (Volume 2 of Modern Theoretical Chemistry), W.H. Miller, editor, Plenum Press, New York (1976), pp. 1–52.

    Google Scholar 

  52. D.L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10, 287 (1971).

    CAS  Google Scholar 

  53. W.H. Miller, Semiclassical theory of atom-diatom collisions: Path integrals and the classical S matrix, J. Chem. Phys. 53, 1949 (1970)

    Article  CAS  Google Scholar 

  54. Classical S matrix for rotational excitation; quenching of quantum effects in molecular collisions, J. Chem. Phys. 54, 5386(1971).

    Google Scholar 

  55. R.A. Marcus, Extension of the WKB method to wavefunctions and transition probability amplitudes (S-matrix) for inelastic or reactive collisions, Chem. Phys. Lett. 7, 525 (1970)

    Article  CAS  Google Scholar 

  56. Theory of semiclassical transition probabilities for inelastic and reactive collisions. V. Uniform approximation in multidimensional systems, J. Chem. Phys. 57, 4903 (1972).

    Article  Google Scholar 

  57. M.S. Child, Semiclassical methods in molecular collision theory, in Dynamics of Molecular Collisions, Part B (Volume 2 of Modern Theoretical Chemistry), W.H. Miller, editor, Plenum Press, New York (1976), pp. 176–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Light, J.C. (1979). Inelastic Scattering Cross Sections I: Theory. In: Bernstein, R.B. (eds) Atom - Molecule Collision Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2913-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2913-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2915-2

  • Online ISBN: 978-1-4613-2913-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics