Skip to main content

Interaction Potentials I: Atom-Molecule Potentials

  • Chapter
Atom - Molecule Collision Theory

Abstract

The concept of the potential energy surface (or hypersurface) is without doubt one of the most fundamental in all of science.(1) The minima on a potential energy surface correspond to the equilibrium geometries of the various isomers. Saddle points or “transition states” play an important role in the determination of the rates of the various chemical reactions which may occur on a surface or hypersurface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Glasstone, K.J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw- Hill Book Company, New York (1941).

    Google Scholar 

  2. I. Shavitt, R.M. Stevens, F.L. Minn, and M. Karplus, Potential-energy surface for H3, J. Chem. Phys. 48, 2700–2713 (1968).

    CAS  Google Scholar 

  3. S.R. Ungemach, H.F. Schaefer, and B. Liu, Concerning ab initio potential energy surfaces for F + H2, Faraday Discuss. Chem. Soc. 62, 330–332 (1977).

    Google Scholar 

  4. C.W. Bauschlicher, K. Haber, H.F. Schaefer, and C.F. Bender, Concerted non-least- motion pathway for the singlet methylene insertion reaction CH2(1A1) + H2 → CH4, J. Am. Chem. Soc. 99, 3610–3614 (1977).

    CAS  Google Scholar 

  5. P.J. Hay and I. Shavitt, Ab initio configuration interaction studies of the π-electron states of benzene, J. Chem. Phys. 60, 2865–2877 (1974).

    CAS  Google Scholar 

  6. P.J. Bruna, R.J. Buenker, and S.D. Peyerimhoff, Theoretical prediction of the electronic spectrum of thioacetone and comparison with related systems, Chem. Phys. 22, 375–382 (1977).

    CAS  Google Scholar 

  7. C.E. Dykstra, R.R. Lucchese, and H.F. Schaefer, Electron correlation effects on the excitation energies of the lowest triplet states of glyoxal, J. Chem. Phys. 67, 2422–2426 (1977).

    CAS  Google Scholar 

  8. D. Spangler, R. McKinney, R.E. Christoffersen, G.M. Maggiori, and L.L. Shipman, Ab initio calculations on large molecules using molecular fragments. Preliminary investigation of ethyl chlorophyllide a and related molecules, Chem. Phys. Lett. 36, 427–431 (1975).

    CAS  Google Scholar 

  9. H.F. Schaefer, Molecular electronic stucture theory: 1972–1975, Ann. Rev. Phys. Chem. 27, 261–290 (1976).

    CAS  Google Scholar 

  10. C.F. Bender, S.V. O’Neil, P.K. Pearson, and H.F. Schaefer, Potential energy surface including electron correlation for F + H2 → FH + H: refined linear surface, Science 176, 1412–1414 (1972).

    CAS  Google Scholar 

  11. B. Liu, Ab initio potential energy surface for linear H3, J. Chem. Phys. 58, 1925–1937 (1973).

    Google Scholar 

  12. D. H. Liskow, C. F. Bender, and H. F. Schaefer, Some features of the CH3NC→CH3CN potential surface, J. Chem. Phys. 57, 4509–4511 ( 1972 ); P. Pulay and H.F. Schaefer, unpublished (1976).

    Google Scholar 

  13. H.F. Schaefer, The Electronic Structure of Atoms and Molecules: A Survey of Rigorous Quantum Mechanical Results, Addison-Wesley Publishing Company, Reading, Mass. (1972).

    Google Scholar 

  14. F. Cavallone and E. Clementi, Electronic structure of the TTF-TCNQ complex, J. Chem. Phys. 63, 4304–4307 (1975).

    CAS  Google Scholar 

  15. W.J. Hehre and J. A. Pople, Molecular orbital theory of the electronic structure of or¬ganic compounds XXVI. Geometries, energies, and polarities of C4 hydrocarbons, J. Am. Chem. Soc. 97, 6941–6955 (1975).

    CAS  Google Scholar 

  16. W.H. Miller, Modern Theoretical Chemistry, Vols. 1 and 2, Plenum Press, New York (1976).

    Google Scholar 

  17. B. Rosen, Spectroscopic Data Relative to Diatomic Molecules, Pergamon Press, Oxford (1970).

    Google Scholar 

  18. A.G. Gaydon, Dissociation Energies and Spectra of Diatomic Molecules, Chapman and Hall Ltd., London (1968).

    Google Scholar 

  19. J.C. Polanyi and J.L. Schreiber, The dynamics of bimolecular reactions, in Physical Chemistry: An Advanced Treatise, H. Eyring, W. Jost, and D. Henderson, editors, Vol. 6A, Academic Press, New York (1974), Chap. 6, pp. 383–487.

    Google Scholar 

  20. E.A. McCullough, The partial-wave self-consistent-field method for diatomic molecules: Computational formalism and results for small molecules, J. Chem. Phys. 62, 3991–3999 (1975).

    CAS  Google Scholar 

  21. A.C. Wahl, Analytical self-consistent-field wave functions and computed properties for homonuclear diatomic molecules, J. Chem. Phys. 41, 2600–2611 (1964).

    CAS  Google Scholar 

  22. R.M. Pitzer and W.N. Lipscomb, Calculation of the barrier to internal rotation in ethane, J. Chem. Phys. 39, 1995–2004 (1963).

    CAS  Google Scholar 

  23. W.J. Hehre, R.F. Stewart, and J.A. Pople, Self-consistent-field molecular-orbital methods I. Use of Gaussian expansion of Slater-type atomic orbitals, J. Chem. Phys. 51, 2657–2664 (1969).

    CAS  Google Scholar 

  24. J.L. Whitten, Gaussian lobe function expansions of Hartree-Fock solutions for the first-row atoms and ethylene, J. Chem. Phys. 44, 359–364 (1966).

    CAS  Google Scholar 

  25. T.H. Dunning, Gaussian basis functions for use in molecular calculations I. Contraction of (9s5p) atomic basis sets for first-row atoms, J. Chem. Phys. 53, 2823–2833 (1970).

    CAS  Google Scholar 

  26. A.D. McLean and M. Yoshimine, Ground states of linear molecules: dissociation energies and dipole moments in the Hartree-Fock approximation, Int. J. Quantum Chem. IS, 313–326 (1967).

    Google Scholar 

  27. W. Meyer, Ionization energies of water from PNO-CI calculations, Int. J. Quantum Chem. 5S, 341–348 (1971).

    Google Scholar 

  28. I. Shavitt, in Modern Theoretical Chemistry, Vol. 4, H.F. Schaefer, editor, Plenum Press, New York (1977), pp. 189–276.

    Google Scholar 

  29. W. Meyer, PNO-CI studies of electron correlation effects I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane, J. Chem. Phys. 58, 1017–1035 (1973).

    CAS  Google Scholar 

  30. B. Roos, A new method for large-scale CI calculations, Chem. Phys. Lett. 15, 153–159 (1972).

    Google Scholar 

  31. R. Ahlrichs, H. Lischka, V. Staemmler, and W. Kutzelnigg, PNO-CI (pair natural orbital configuration interaction) and CEPA-PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems I. Outline of the method for closed-shell states, J. Chem. Phys. 62, 1225–1234 (1975).

    CAS  Google Scholar 

  32. C.E. Dykstra, H.F. Schaefer, and W. Meyer, A theory of self-consistent electron pairs. Computational methods and preliminary applications, J. Chem. Phys. 65, 2740–2750 (1976).

    CAS  Google Scholar 

  33. J.A. Pople, R. Seeger, and R. Krishnan, Variational configuration interaction methods and comparison with perturbation theory, Int. J. Quantum. Chem. 11S, 149–163 (1977).

    CAS  Google Scholar 

  34. H.F. Schaefer and W.H. Miller, Large scale scientific computation via minicomputer, Comput. Chem. 1, 85–90 (1976).

    Google Scholar 

  35. R.R. Lucchese, B.R. Brooks, J.H. Meadows, W.C. Swope, and H.F. Schaefer, BER¬KELEY: an “open ended” configuration interaction (CI) program designed for minicomputers, J. Comput. Phys. 26, 243–251 (1978).

    CAS  Google Scholar 

  36. A.L. Robinson, Computational chemistry: getting more from a minicomputer, Science 193, 470–472 (1976)

    CAS  Google Scholar 

  37. W.G. Richards, Minicomputers for quantum chemists, Nature 266 (5597), 18 (1977).

    Google Scholar 

  38. R.J. Bartlett and I. Shavitt, Chem. Phys. Lett. 50, 190–198 (1978).

    Google Scholar 

  39. J. Cizek, On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules, Adv. Chem. Phys. 14, 35–89 (1969)

    CAS  Google Scholar 

  40. J. Paldus, J. Cizek, and I. Shavitt, Correlation problems in atomic and molecular systems IV. Extended coupled-pair many-electron theory and its application to the BH3 molecule, Phys. Rev. A5, 50–67 (1972).

    Google Scholar 

  41. F. Sasaki, Effectiveness of configuration interaction calculations for large molecules, Contributions from the Research Group on Atoms and Molecules, No. 13, K. Hijikata and E. Ishiguro, editors, Dept. of Physics, Ochanomizu University, Tokyo 112, Japan (1977), pp. 39–43.

    Google Scholar 

  42. P.S. Bagus, B. Liu, A.D. McLean, and M. Yoshimine, in Wave Mechanics: The First Fifty Years, W.C. Price, S.S. Chissick, T. Ravensdale, editors, Butterworth Publishers, London (1973), pp. 99–118.

    Google Scholar 

  43. R.J. Buenker and S.D. Peyerimhoff, Energy extrapolation in CI calculations, Theor. Chim. Acta 39, 217–228 (1975).

    CAS  Google Scholar 

  44. O. Sinanoglu, Many-electron theory of atoms and molecules, Proc. Natl. Acad. Sci. USA 47,1217–1226(1961).

    CAS  Google Scholar 

  45. G.C. Lie, J. Hinze, and B. Liu, Valence excited states of CH, J. Chem. Phys. 59, 1872–1898 (1973).

    CAS  Google Scholar 

  46. S.R. Langhoff and E.R. Davidson, Configuration interaction calculations on the nitrogen molecule, Int. J. Quantum Chem. 8, 61–72 (1974).

    CAS  Google Scholar 

  47. H.J. Silverstone and O. Sinanoglu, Many-electron theory of nonclosed-shell atoms and molecules II. Variational theory, J. Chem. Phys. 44, 3608–3617 (1966).

    CAS  Google Scholar 

  48. H.F. Schaefer and F.E. Harris, Metastability of the 1D state of the nitrogen negative ion, Phys. Rev. Lett. 21, 1561–1563 (1968).

    CAS  Google Scholar 

  49. P.J. Hay, T.H. Dunning, and W.A. Goddard, Configuration interaction studies of O3 and O3 +. Ground and excited states, J. Chem. Phys. 62, 3912–3924 (1975).

    CAS  Google Scholar 

  50. W.J. Hunt, P.J. Hay, and W.A. Goddard, Self-consistent-field procedures for generalized valence bond wavefunctions. Applications to H3, BH, H2O, C2H6, and O2, J. Chem. Phys. 57, 738–748 (1972).

    Google Scholar 

  51. W.J. Stevens, G. Das, A. C. Wahl, M. Krauss, and D. Neumann, Study of the ground state potential curve and dipole moment of OH by the method of optimized valence configurations, J. Chem. Phys. 61, 3686–3699 (1974).

    CAS  Google Scholar 

  52. G.D. Gillespie, A.U. Khan, A.C. Wahl, R.P. Hosteny, and M. Krauss, The electronic

    Google Scholar 

  53. structure of nitrogen dioxide I. Multiconfiguration self-consistent-field calculation of the low-lying electronic states, J. Chem. Phys. 63, 3425–3444 (1975).

    Google Scholar 

  54. K. Kirby-Docken and B. Liu, Theoretical study of molecular dipole moment functions I. The X1 Ʃ + state of CO, J. Chem. Phys. 66, 4309–4316 (1977).

    CAS  Google Scholar 

  55. J.P. Toennies, Rotationally and vibrationally inelastic scattering of molecules, Chem. Soc. Rev. 3, 407–441 (1974).

    CAS  Google Scholar 

  56. W.A. Lester, Interaction potential between Li+ and H2 I. Region appropriate for rotational excitation, J. Chem. Phys. 53, 1511–1515 (1970).

    CAS  Google Scholar 

  57. W.A. Lester, Interaction potential between Li+ and H2 II. Region appropriate to vibrational excitation, J. Chem. Phys. 54, 3171–3179 (1971).

    CAS  Google Scholar 

  58. V. Staemmler, Ab initio calculation of the potential energy surface of the system N2Li +, Chem. Phys. 7, 17–29 (1975).

    CAS  Google Scholar 

  59. W. Kutzelnigg, V. Staemmler, and C. Hoheisel, Computer potential hypersurface (including electron correlation) of the system Li + /H2, Chem. Phys. 1, 27–44 (1973).

    CAS  Google Scholar 

  60. J. Schaefer and W.A. Lester, Theoretical study of inelastic scattering of H2 by Li+ on SCF and CI potential energy surfaces, J. Chem. Phys. 62, 1913–1924 (1975).

    CAS  Google Scholar 

  61. G.D. Barg, G.M. Kendall, and J.P. Toennies, Quasi-classical calculations of elastic and rotationally and vibrationally inelastic differential cross sections for Li+ + H2, Chem. Phys. 16, 243–268 (1976).

    CAS  Google Scholar 

  62. C.H. Townes and A.C. Cheung, A pumping mechanism for anomalous microwave absorption in formaldehyde in interstellar space, Astophys. J. Lett. 157, L103–L108 (1969).

    CAS  Google Scholar 

  63. B.J. Garrison, W.A. Lester, and H.F. Schaefer, A Hartree-Fock interaction potential between a rigid asymmetric top and a spherical atom: (H2CO,He), J. Chem. Phys. 63, 1449–1454 (1975).

    CAS  Google Scholar 

  64. B.J. Garrison, W.A. Lester, P. Siegbahn, and H.F. Schaefer, Effect of electron correlation on the H2CO-He interaction potential, J. Chem. Phys. 63, 4167–4170 (1975).

    CAS  Google Scholar 

  65. B.J. Garrison, W.A. Lester, W.H. Miller, and S. Green, Cooling of the 6-centimeter and 2-centimeter doublets of interstellar H2CO by collision: an accurate quantum mechanical calculation, Astrophys. J. Lett. 200, L175–L177 (1975).

    CAS  Google Scholar 

  66. N.J. Evans, B. Zuckerman, G. Morris, and T. Sato, Interstellar H2CO I. Absorption studies, dark clouds, and the cosmic background radiation, Astrophys. J. 196, 433–456 (1975).

    CAS  Google Scholar 

  67. P. Siegbahn and B. Liu, An accurate three-dimensional potential energy surface for H3, J. Chem. Phys. 68, 2457–2465 (1978).

    CAS  Google Scholar 

  68. S.F. Boys, G.B. Cook, C.M. Reeves, and I. Shavitt, Automatic fundamental calculations of molecular structure, Nature 178, 1207–1209(1956).

    Google Scholar 

  69. J. Hirschfelder, H. Eyring, and B. Topley, Reactions involving hydrogen molecules and atoms, J. Chem. Phys. 4, 170–187 (1936).

    CAS  Google Scholar 

  70. D.G. Truhlar and R.E. Wyatt, History of H3 kinetics, Ann. Rev. Phys. Chem. 27, 1–43 (1976).

    CAS  Google Scholar 

  71. B. Liu, Ab initio potential energy surface for linear H3, J. Chem. Phys. 58, 1925–1937 (1973).

    CAS  Google Scholar 

  72. R.N. Porter and M. Karplus, Potential energy surface for H3, J. Chem. Phys. 40, 1105–1115 (1964).

    CAS  Google Scholar 

  73. D.G. Truhlar and C.J. Horowitz, Functional representation of Liu and Siegbahn’s accurate ab initio potential energy calculations for H + H2, J. Chem. Phys. 68, 2466–2476 (1978).

    CAS  Google Scholar 

  74. R. Gengenbach, Ch. Hahn, and J.P. Toennies, Molecular beam measurements of the D + H2 potential and recalibration of the reactive cross section, J. Chem. Phys. 62, 3620–3630 (1975).

    CAS  Google Scholar 

  75. R. Foon and M. Kaufman, Kinetics of gaseous fluorine reactions, Prog. React. Kinet. 8, 81–160 (1975).

    Google Scholar 

  76. D.J. Douglas and J.C. Polanyi, Effect of changing reagent energy on reaction VII. Dependence of product energy distribution on reagent rotational excitation in F + H2(J) → HF + H, Chem. Phys. 16, 1–8 (1976), and references therein.

    CAS  Google Scholar 

  77. R.D. Coombe and G.C. Pimentel, Effects of rotation on the vibrational energy distributions in the reaction F + H2, J. Chem. Phys. 59, 1535–1536 (1973).

    CAS  Google Scholar 

  78. T.P. Schafer, P.E. Siska, J.M. Parson, F.P. Tully, Y.C. Wong, and Y.T. Lee, Crossed molecular beam study of F + D2, J. Chem. Phys. 53, 3385–3387 (1970).

    CAS  Google Scholar 

  79. R.F. Heidner, and J.F. Bott, Vibrational deactivation of HF(ν= 1) and DF(v = 1) by H and D atoms, J. Chem. Phys. 63, 1810 - 1817 (1975).

    CAS  Google Scholar 

  80. C.F. Bender, P.K. Pearson, S.V. O’Neil, and H.F. Schaefer, Potential energy surfaces including electron correlation for the chemical reaction F + H2 → FH + H. I. Preliminary surface, J. Chem. Phys. 56, 4626–4631 (1972).

    CAS  Google Scholar 

  81. W.A. Lathan, L.A. Curtiss, W.J. Hehre, J.B. Lisle, and J.A. Pople, Molecular orbital structures for small organic molecules and cations, Prog. Phys. Org. Chem. 11, 175–261 (1974).

    CAS  Google Scholar 

  82. J.T. Muckerman, Chemical dynamics of the reaction of fluorine atoms with hydrogen molecules II. Dependence on the potential energy surface, J. Chem. Phys. 56, 2997–3006 (1972).

    CAS  Google Scholar 

  83. J.C. Polanyi and J.L. Schreiber, Distribution of reaction products (theory). Investigation of an ab initio energy surface for F + H2 → HF + H, Chem. Phys. Lett. 29, 319–322 (1974).

    CAS  Google Scholar 

  84. A.L. Robinson, Chemical dynamics: accurate quantum calculations at last, Science 191, 275–276 (1976).

    CAS  Google Scholar 

  85. D.L. Thompson, Monte Carlo classical trajectory calculation of the rates of H- and D-atom vibrational relaxation of HF and DF, J. Chem. Phys. 57, 4170–4173 (1972).

    CAS  Google Scholar 

  86. R.L. Wilkins, Monte Carlo calculations of reaction rates and energy distribution among reaction products. II. H + HF(v) → H2(v’) + F and H + HF (v) → HF(v’) + H, J. Chem. Phys. 58, 3038–3046 (1973).

    Google Scholar 

  87. C.F. Bender, B.J. Garrison, and H.F. Schaefer, A critical test of semiempirical FH2 potential energy surfaces: the barrier height for H + FH → HF + H, J. Chem. Phys. 62, 1188–1190 (1975).

    CAS  Google Scholar 

  88. P. Botschwina and W. Meyer, PNO-CEPA calculation of collinear potential energy barriers for thermoneutral exchange reactions, Chem. Phys. 20, 43–52 (1977).

    CAS  Google Scholar 

  89. W.R. Wadt and N.W. Winter, Accurate characterization of the transition state geometry for the HF + H’→H + H’F reaction, J. Chem. Phys. 67, 3068–3073 (1977).

    CAS  Google Scholar 

  90. J.C. Polanyi and J.J. Sloan, Energy distribution among reaction products VII. H + F2, J. Chem. Phys. 57, 4988–4998 (1972).

    CAS  Google Scholar 

  91. S.V. O’Neil, P.K. Pearson, H.F. Schaefer, and C.F. Bender, On the H + F2→HF + F reaction. An ab initio potential energy surface, J. Chem. Phys. 58, 1126–1131 (1973).

    Google Scholar 

  92. C.F. Bender, C.W. Bauschlicher, and H.F. Schaefer, Saddle point geometry and barrier height for H + F2→HF + F, J. Chem. Phys. 60, 3707–3708 (1974).

    CAS  Google Scholar 

  93. S.V. O’Neil, H.F. Schaefer, and C.F. Bender, Barrier height for the exchange reaction F + HF→FH + F, Proc. Natl. Acad. Sci. USA 71, 104–106 (1974).

    Google Scholar 

  94. D.G. Truhlar, P.C. Olson, and C.A. Parr, Computed bond energies and vibrational frequencies for C1HC1, BrHBr, and IHI, including isotope effects and anharmonicity, J. Chem. Phys. 57, 4479–4483 (1972).

    CAS  Google Scholar 

  95. D.L. Thompson, Monte Carlo classical trajectory calculation of the rates of F-atom vibrational relaxation of HF and DF, J. Chem. Phys. 57, 4164–4169 (1974).

    Google Scholar 

  96. B.H. Mahan, Electronic structure and chemical dynamics, Acct. Chem. Res. 8, 55–61 (1975).

    CAS  Google Scholar 

  97. B.H. Mahan and T.M. Sloane, Dynamics of the C + -H2 reaction, J. Chem. Phys. 59, 5661–5675 (1973).

    CAS  Google Scholar 

  98. J.A. Fair and B.H. Mahan, Dynamics of the reaction of N+ with H2 II. Reactive scattering at relative energies below 3 eV, J. Chem. Phys. 62, 515–519 (1975).

    CAS  Google Scholar 

  99. K.T. Gillen, B.H. Mahan, and J.S. Winn, Dynamics of the O+-H2 reaction I. Reactive scattering of O+(4S3/2) at relative energies below 15 eV, J. Chem. Phys. 58, 5373–5384 (1973).

    CAS  Google Scholar 

  100. R.B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Verlag Chemie, Weinham/Bergstr., West Germany (1970).

    Google Scholar 

  101. D.H. Liskow, C.F. Bender, and H.F. Schaefer, Potential energy surfaces related to the ion molecule reaction C+ + H2, J. Chem. Phys. 61, 2507–2513 (1974).

    CAS  Google Scholar 

  102. P.K. Pearson and E. Roueff, A low-energy passage of C+ + H2→CH2+J. Chem. Phys. 64, 1240–1241 (1976).

    Google Scholar 

  103. M.A. Gittins and D.M. Hirst, Mn ab initio potential energy surface for the reaction N+ + H2 → NH+ + H, Chem. Phys. Lett. 35, 534–536 (1975).

    CAS  Google Scholar 

  104. C.F. Bender, J.H. Meadows, and H.F. Schaefer, Potential energy surfaces for ion- molecule reactions. Intersection of the 3A2 and 3B1 surfaces of NH2+, Faraday Discuss. Chem. Soc. 62, 59–66 (1977).

    CAS  Google Scholar 

  105. Y.T. Lee, R.J. Gordon, and D.R. Herschbach, Molecular beam kinetics: Reactions of H and D atoms with diatomic alkali molecules, J. Chem. Phys. 54, 2410–2423 (1971).

    CAS  Google Scholar 

  106. R.K. Preston and J.C. Tully, Effects of surface crossing in chemical reactions: The H3 system, J. Chem. Phys. 54, 4297–4303 (1971); Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H+ with D2, J. Chem. Phys. 55, 562–572 (1971).

    Google Scholar 

  107. R.D. Levine and R.B. Bernstein, Energy disposal and energy requirements for elementary chemical reactions, Discuss. Faraday Soc. 55, 100–112 (1973).

    CAS  Google Scholar 

  108. P. Siegbahn and H.F. Schaefer, Potential energy surfaces for H + Li2 → LiH + Li. Ground state surface from large scale configuration interaction, J. Chem. Phys. 62, 3488–3495 (1975).

    CAS  Google Scholar 

  109. P.K. Pearson, W.J. Hunt, C.F. Bender, and H.F. Schaefer, Simplest halogen atom plus alkali dimer potential surface: F + Li2 → LiF + Li, J. Chem. Phys. 58, 5358–5363 (1973).

    CAS  Google Scholar 

  110. W.B. England; N.H. Sabelli, and A.C. Wahl, A theoretical study of Li2H. I. Basis set and computational survey of excited states and possible reaction paths, J. Chem. Phys. 63, 4596–4605 (1975).

    CAS  Google Scholar 

  111. L.R. Kahn, P.J. Hay, and I. Shavitt, Theoretical study of curve crossing: ab initio calculations on the four lowest 1Ʃ+states of LiF, J. Chem. Phys. 61, 3530–3546 (1974).

    CAS  Google Scholar 

  112. T.H. Dunning, The barriers for abstraction and exchange in H + HC1, J. Chem. Phys. 66, 2752–2753 (1977).

    CAS  Google Scholar 

  113. G.O. Wood, Isotope exchange vs. abstraction for H + DC1, J. Chem. Phys. 56, 1723–1727 (1972).

    CAS  Google Scholar 

  114. A.A. Westenberg and N. de Haas, Atom-molecule kinetics using ESR detection IV. Results for CI + H2 = HC1 + H in both directions, J. Chem. Phys. 48, 4405–4415 (1968).

    CAS  Google Scholar 

  115. A.E. de Vries and F.S. Klein, Ultraviolet-induced isotope exchange in gaseous mixtures of HC1 and D2 and of DC1 and H2, J Chem. Phys. 41, 3428–3435 (1969).

    Google Scholar 

  116. J.D. McDonald and D.R. Herschbach, Molecular beam kinetics: Exchange reactions of deuterium atoms with hydrogen halides, J. Chem. Phys. 62, 4740–4744 (1975).

    CAS  Google Scholar 

  117. P. Botschwina and W. Meyer, A PNO- EPA calculation of the barrier height for the collinear atom exchange reaction H’ + BrH → H’Br + H, J. Chem. Phys. 67, 2390–2391 (1977).

    CAS  Google Scholar 

  118. W.A. Lester and M. Krauss, Interaction potential between Li and HF, J. Chem. Phys. 52, 4775–4781 (1970).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Schaefer, H.F. (1979). Interaction Potentials I: Atom-Molecule Potentials. In: Bernstein, R.B. (eds) Atom - Molecule Collision Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2913-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2913-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2915-2

  • Online ISBN: 978-1-4613-2913-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics