Skip to main content

Complex-Mode Chemical Reactions: Statistical Theories of Bimolecular Reactions

  • Chapter
Atom - Molecule Collision Theory

Abstract

Statistical theories of chemical reactions have had an exceptionally long tenure as one of the means of theoretical interpretation of experimental results. In fact it is only in the past decade that, with the availability and scientific understanding of computers, theoreticians have had the temerity to attempt to go beyond either statistical or elementary model theories for reactions of simple systems. However, even in the age of Cray I computers statistical theories of chemical reactions are applied often, refined periodically, and occasionally relied upon. The reason for this is simple. In spite of occasionally somewhat tedious algebra, statistical theories provide an easily understood, if extreme, model against which to compare reality, i.e., experiment. Statistical theories can relatively easily be tailored to conform to the experimental information at hand and do provide a quantitative measure of one relatively intuitive possible outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Glasstone, K. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York.

    Google Scholar 

  2. K. Laidler, Chemical Kinetics, McGraw-Hill, New York (1965).

    Google Scholar 

  3. D.L. Bunker, Theory of Elementary Gas Reactions, Pergamon Press, Oxford (1966).

    Google Scholar 

  4. P. Pechukas, in Dynamics of Molecular Collisions, Part B (Volume 2 of Modern Theoretical Chemistry), Wm. Miller, editor, Plenum Press, New York (1976).

    Google Scholar 

  5. D.R. Bates, Transition state theory for ion-molecule reactions, Proc. R. Soc. London A 360, 1 (1978).

    Article  CAS  Google Scholar 

  6. W. H. Miller, Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants, J. Chem. Phys, 61, 1823 (1974)

    Article  CAS  Google Scholar 

  7. W. H. Miller, Semiclassical limit of quantum mechanical transition state theory for nonseparable systems, J. Chem. Phys. 62, 1899 (1975).

    Article  CAS  Google Scholar 

  8. R.A. Marcus, Dissociation and isomerization of vibrationally excited species, J. Chem. Phys. 20, 359 (1952).

    Article  CAS  Google Scholar 

  9. G,M. Wieder and R.A. Marcus, Dissociation and isomerization of vibrationally excited species. II. Unimolecular reaction rate theory and its application, J. Chem. Phys. 37, 1835 (1962).

    Article  CAS  Google Scholar 

  10. E.E. Nikitin, Theory of Thermally Induced Gas Phase Reactions, Indiana University Press, Bloomington (1966)

    Google Scholar 

  11. W.L. Hase, Dynamics of unimolecular reactions, in Dynamics of Molecular Collisions, Part B (Volume 2 of Modern Theoretical Chemistry), Wm. Miller, editor, Plenum Press, New York (1976).

    Google Scholar 

  12. R.A. Marcus, Chemical reaction cross sections, quasiequilibrium, and generalized activated complexes, J. Chem. Phys. 45, 2138 (1966)

    Article  CAS  Google Scholar 

  13. R.A. Marcus, On the theory of energy distributions of products of molecular beam reactions involving transient complexes, J. Chem. Phys. 62, 1372 (1975).

    Article  CAS  Google Scholar 

  14. G. Worry and R.A. Marcus, On the theory of translational energy distributions of product molecules of molecular beam reactions involving transient complexes. II, J. Chem. Phys. 67, 1636 (1977).

    Article  CAS  Google Scholar 

  15. E.E. Nikitin, Relaxation in a double potential well, Theor. Expt. Chem. (USSR) 1, 5 (1965).

    Article  Google Scholar 

  16. P. Pechukas and J. Light, On detailed balancing and statistical theories of chemical kinetics, J. Chem. Phys. 42, 3281 (1965).

    Article  CAS  Google Scholar 

  17. J.C. Light, Statistical theories of bimolecular exchange reactions, Discuss. Faraday Soc. 44, 14 (1967).

    Article  Google Scholar 

  18. R.D. Levine, Quantum Mechanics of Molecular Rate Processes, Oxford University Press, Oxford (1968)

    Google Scholar 

  19. R.D. Levine, see also Discuss. Faraday Soc. 44, 81 (1967).

    Google Scholar 

  20. P. Pechukas, J. Light, and C. Rankin, Statistical theory of chemical kinetics: Application to neutral-atom-molecule reactions, J. Chem. Phys. 44, 794 (1966).

    Article  CAS  Google Scholar 

  21. P. Dagdigian, H. Cruse, A. Schultz, and R. Zare, Product state analysis of BaO from the reactants Ba + CO2 and Ba + O2, J. Chem. Phys. 61, 4450 (1974).

    Article  CAS  Google Scholar 

  22. W. Chesnavich and M. Bowers, Statistical phase space theory of polyatomic systems: Rigorous energy and angular momentum conservation in reactions involving symmetric polyatomic species, J. Chem. Phys. 66, 2306 (1977).

    Article  CAS  Google Scholar 

  23. C. Rebick and R. Levine, Collision induced dissociation: A statistical theory, J. Chem. Phys. 58, 3942 (1973).

    Article  CAS  Google Scholar 

  24. S. Safron, Ph.D. Thesis, Harvard University, Cambridge, Massachusetts, 1969 (unpublished).

    Google Scholar 

  25. W.B. Miller, S.A. Safron, and D.R. Herschbach, Exchange reactions of alkali atoms with alkali halides: A collision complex mechanism, Discuss. Faraday Soc. 44, 108 (1967).

    Article  Google Scholar 

  26. A. Wagner and E. Parks, A classical statistical theory for chemical reactions, J. Chem. Phys. 65, 4343 (1976).

    Article  CAS  Google Scholar 

  27. W.H. Miller, Unified statistical model for “complex” and “direct” reaction mechanisms, J. Chem. Phys. 65, 2216 (1976).

    Article  CAS  Google Scholar 

  28. E. Pollak, Prior statistical distributions for the collision of an atom with a diatom, J. Chem. Phys. 68, 547 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Light, J.C. (1979). Complex-Mode Chemical Reactions: Statistical Theories of Bimolecular Reactions. In: Bernstein, R.B. (eds) Atom - Molecule Collision Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2913-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2913-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2915-2

  • Online ISBN: 978-1-4613-2913-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics