Skip to main content

Rotational Excitation III: Classical Trajectory Methods

  • Chapter
Atom - Molecule Collision Theory

Abstract

The use of classical trajectory (CT) methods in the solution of molecular scattering problems has been the subject of several recent review articles.(1–5) Here we restrict attention to nonreactive, rotationally inelastic collisions and focus on the practical details involved in executing a trajectory calculation. Before proceeding, a few comments are in order on the accuracy and utility of CT methods as applied to rotational excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10, 287–325 (1971).

    CAS  Google Scholar 

  2. J.C. Keck, Monte Carlo trajectory calculations of atomic and molecular excitation in thermal systems, Adv. At. Mol. Phys. 8, 39–69 (1972).

    Article  CAS  Google Scholar 

  3. R.N. Porter, Molecular trajectory calculations, Ann. Rev. Phys. Chem. 25, 317–355 (1974).

    Article  CAS  Google Scholar 

  4. J.C. Polanyi and J.L. Schreiber, The dynamics of bimolecular reactions, in Physical Chemistry—An Advanced Treatise, H. Eyring, W. Jost, and D. Henderson, editors, Vol. 6A, Kinetics of Gas Reactions, Academic Press, New York (1974),Chap. 6, pp. 383–487.

    Google Scholar 

  5. R.N. Porter and L.M. Raff, Classical trajectory methods in molecular collisions, in Dynamics of Molecular Collisions, Part B, W.H.Miller, editor, Plenum Press, New York (1976), Chap. 1, pp. 1 - 52.

    Google Scholar 

  6. W.H. Miller, Classical-limit quantum mechanics and the theory of molecular collisions, Adv. Chem. Phys. 25, 69 - 179 (1974).

    Article  Google Scholar 

  7. G.D. Barg, G.M. Kendall, and J.P. Toennies, Quasi-classical calculations of elastic and rotationally and vibrationally inelastic differential cross sections for Li+ + H2, Chem. Phys. 16, 243–268 (1976).

    Article  CAS  Google Scholar 

  8. R.A. LaBudde and R.B. Bernstein, Classical study of rotational excitation of a rigid rotor: Li+ + H,. II. Correspondence with quantal results, J. Chem. Phys. 59, 3687–3691 (1973).

    Article  CAS  Google Scholar 

  9. G.D. Barg, H. Fremery, and J.P. Toennies, Faraday Discuss. Chem. Soc. 55, 59 (1973).

    Google Scholar 

  10. G. M. Kendall and J. P. Toennies, Faraday Discuss. Chem. Soc. 55, 227–229 (1973).

    Google Scholar 

  11. P. McGuire, Close-coupling elastic and inelastic integral and differential cross sections for Li+ + H2 collisions, Chem. Phys. 4, 249–258 (1974).

    Article  CAS  Google Scholar 

  12. S.D. Augustin and W.H. Miller, Classical trajectory study of rotational excitation in low energy He-CO and He-H2 collisions, Chem. Phys. Lett. 28, 149–152 (1974).

    Article  CAS  Google Scholar 

  13. P. Brumer, Rotational excitation and interference effects in atom-rotor collisions, Chem. Phys. Lett. 28, 345–351 (1974).

    Article  CAS  Google Scholar 

  14. R.T Pack, Close coupling test of classical and semiclassical cross sections for rotationally inelastic Ar-N2 collisions, J. Chem. Phys. 62, 3143–3148 (1975).

    Article  CAS  Google Scholar 

  15. M.D. Pattengill, A comparison of classical trajectory and exact quantal cross sections for rotationally inelastic Ar-N2 collisions, Chem. Phys. Lett. 36, 25–28 (1975).

    Article  CAS  Google Scholar 

  16. M.D. Pattengill, A classical trajectory study of inelastic scattering in the system He + H2, J. Chem. Phys. 65, 5033–5036 (1976).

    Article  CAS  Google Scholar 

  17. S.M. Tarr, H. Rabitz, D.E. Fitz, and R.A. Marcus, Classical and quantum centrifugal decoupling approximations for HCl-Ar, J. Chem. Phys. 66, 2854–2859 (1977).

    Article  CAS  Google Scholar 

  18. J.C. Polanyi, N. Sathyamurthy, and J.L. Schreiber, Rotational energy transfer (theory). I. Comparison of quasiclassical and quantum mechanical results for elastic and rotationally inelastic HCl-Ar collisions, Chem. Phys. 24, 105–110 (1977).

    Article  CAS  Google Scholar 

  19. C.S. Lin and D. Secrest, Rotational excitation of H2 in collision with He, J. Chem. Phys. 67, 1291–1292 (1977).

    Article  CAS  Google Scholar 

  20. S. Chapman and S. Green, Rotational excitation of linear molecules by collisions with atoms: Comparison of classical and quantum methods, J. Chem. Phys. 67, 2317–2332 (1977).

    Article  CAS  Google Scholar 

  21. W.H. Miller, Classical S matrix for rotational excitation; quenching of quantum effects in molecular collisions, J. Chem. Phys. 54, 5386–5397 (1971).

    Article  CAS  Google Scholar 

  22. M.D. Pattengill, A classical mechanical study of the effects of vibration in inelastic He-H2 scattering, J. Chem. Phys. 66, 1449–1451 (1977).

    Article  CAS  Google Scholar 

  23. M. Karplus, R.N. Porter, and R.D. Sharma, Exchange reactions with activation energy. I. Simple barrier potential for (H, H2), J. Chem. Phys. 43, 3259–3287 (1965).

    Article  CAS  Google Scholar 

  24. R.A. LaBudde and R.B. Bernstein, Classical study of rotational excitation of a rigid rotor: Li+ + H2, J. Chem. Phys. 55, 5499–5516 (1971).

    Article  Google Scholar 

  25. H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Mass. (1950), p. 42ff.

    Google Scholar 

  26. A. Gelb, Classical trajectory study of rotational excitation of HD by collisions with He, Chem. Phys. 27, 245–249 (1978).

    Article  CAS  Google Scholar 

  27. J.M. Bowman and S.C. Leasure, An improved quasiclassical histogram method, J. Chem. Phys. 66, 1756–1757 (1977); Erratum, J. Chem. Phys. 67, 4784 (1977).

    Article  Google Scholar 

  28. W.C. Hamilton, Statistics in Physical Science, Ronald Press, New York (1964), p. 30ff.

    Google Scholar 

  29. C.A. Parr, J.C. Polanyi, and W.H. Wong, Distribution of reaction products (theory), VIII. CI + HI, CI + DI, J. Chem. Phys. 58, 5–20 (1973).

    Article  CAS  Google Scholar 

  30. D.G. Truhlar and J.W. Duff, Classical probability matrix: Prediction of quantum state distributions by a moment analysis of classical trajectories, Chem. Phys. Lett. 36, 551–554 (1975).

    Article  CAS  Google Scholar 

  31. D.G. Truhlar, Quasiclassical predictions of final vibrational state distributions in reactive and nonreactive collisions, Int. J. Quantum Chem. Symp. 10, 239–250 (1976).

    Article  CAS  Google Scholar 

  32. R.D. Levine, R.B. Bernstein, P. Kahana, I. Procaccia, and E.T. Upchurch, Surprisal analysis and probability matrices for rotational energy transfer, J. Chem. Phys. 64, 796–807 (1976).

    Article  CAS  Google Scholar 

  33. I. Procaccia and R.D. Levine, Cross sections for rotational energy transfer: An information theoretic synthesis, J. Chem. Phys. 64, 808–817 (1976).

    Article  CAS  Google Scholar 

  34. M.D. Pattengill and R.B. Bernstein, Surprisal analysis of classical trajectory calculations of rotationally inelastic cross sections for the Ar-N2 system; influence of the potential energy surface, J. Chem. Phys. 65, 4007–4015 (1976).

    Article  CAS  Google Scholar 

  35. M.D. Pattengill, C.F. Curtiss, and R.B. Bernstein, Molecular collisions. XV. Classical limit of the generalized phase shift treatment of rotational excitation: Atom-rigid rotor, Chem. Phys. 55, 3682–3693 (1971).

    CAS  Google Scholar 

  36. M.D. Pattengill, R.A. LaBudde, R.B. Bernstein, and C.F. Curtiss, Molecular collisions. XVI. Comparison of GPS with classical trajectory calculations of rotational inelasticity for the Ar-N2 system, J. Chem. Phys. 55, 5517–5522 (1971).

    Article  CAS  Google Scholar 

  37. D.G. Truhlar and N.C. Blais, Legendre moment method for calculating differential scattering cross sections from classical trajectories with Monte Carlo initial conditions, J. Chem. Phys. 67, 1532–1540 (1977).

    Article  CAS  Google Scholar 

  38. N.C. Blais and D.G. Truhlar, Monte Carlo trajectories: Alignment of HBr rotational angular momentum as a function of scattering angle for the reaction H + Br2→ HBr + Br, J. Chem. Phys. 67, 1540–1547 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Pattengill, M.D. (1979). Rotational Excitation III: Classical Trajectory Methods. In: Bernstein, R.B. (eds) Atom - Molecule Collision Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2913-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2913-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2915-2

  • Online ISBN: 978-1-4613-2913-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics