Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 74))

Abstract

Partial linear polarization is a prominent attribute of both scattered and reflected light in nature. Consequently sunlight in the atmosphere and hydrosphere produces substantial polarization patterns in which e-vector directions and (to a more variable extent) degree of polarization are reasonably well predicted by primary Rayleigh scattering. Despite its negligible relevance for normal human vision many organisms have been shown, following von Frisch’s pioneer work, to have polarization sensitivity at various levels ranging from dichroism of visual and accessory pigments, to photoreceptor cells, to visual interneurons and ultimately oriented behavior.

By definition polarization sensitivity is the capacity of any biological element to respond differentially to either e-vector direction or degree of polarization of a light stimulus. While this capability shows interesting analogies with spectral sensitivity, the extent to which polarization vision, if indeed it has its own quality, is parallel to color vision remains to be experimentally demonstrated.

Analyzing progress mainly evident in research published during the past two to three years, the present review reports on significant new research in four areas: 1. Measurements of sky polarization in relation to animal vision. 2. Specialization of receptor mechanisms for polarization sensitivity particularly at the retinal and retinular levels. Among other things, work with genetic mutants is beginning to influence this area as it has many others. 3. Information processing (mostly relevant to e-vector direction) remains largely speculative except for some interneuron recordings in crustaceans. 4. Field and laboratory behavioral experiments mainly on bees and ants, but to some extent on flies, continue to define the adaptive applications which animals have evolved for polarization sensitivity.

We’ll teach you to drink deep ere you depart. Hamlet, Act I, Sc. 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Able, K.P. (1982) Skylight polarization patterns at dusk influence migratory orientation in birds. Nature 299: 550–551.

    Google Scholar 

  • Altner, I., Burkhardt, D. (1981) Fine structure of the ommatidia and the occurrence of rhabdomeric twist in the dorsal eye of male Bibio marci (Diptera, Nematocera, Bibionidae). Cell Tissue Res. 215: 607–623.

    Google Scholar 

  • Autrum, H. (Ed.) (1979) Handbook of Sensory Physiology. Vol. VII/6. Vision in Invertebrates. A: Invertebrate Photoreceptors. Berlin, Springer-Verlag, 707 pp.

    Google Scholar 

  • Autrum, H. (Ed.) (1981a) Handbook of Sensory Physiology. Vol. VII/6. Vision in Invertebrates. B. Invertebrate Visual Centers and Behavior I. Berlin, Springer-Verlag, 611 pp.

    Google Scholar 

  • Autrum, H. (Ed.) (1981b) Handbook of Sensory Physiology. Vol. VII/6. Vision in Invertebrates. C: Invertebrate Visual Centers and Behavior II. Berlin, Springer-Verlag, 665 pp.

    Google Scholar 

  • Batschelet, E. (1981) Circular Statistics in Biology. London, Academic Press, 371 pp.

    Google Scholar 

  • Bernard, G.D., Wehner, R. (1977) Functional similarities between polarization vision and color vision. Vision Res. 17: 1019–1028.

    Google Scholar 

  • Blest, A.D. (1978) The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider. A daily cycle. Proc. Roy. Soc. Lond. B 200: 463–483.

    Google Scholar 

  • Blest, A.D., Stowe, S., Eddey, W., Williams, D.S. (1982) The local deletion of microvillar cytoskeleton from photoreceptors of tipulid flies during membrane turnover. Proc. Roy. Soc. Lond. B 215: 469–479.

    Google Scholar 

  • Bowmaker, J.K. (1983) Trichromatic color vision: why only three receptor channels? Trends Neurosci. 6: 41–43.

    Google Scholar 

  • Brines, M.L. (1978) Skylight polarization patterns as cues for honey bee orientation; physical measurements and behavioral experiments. Ph.D. Thesis. Rockefeller University. 393 pp.

    Google Scholar 

  • Brines, M.L. (1980) Dynamic patterns of skylight polarization as clock and compass. J. Theor. Biol. 86: 507–512.

    Google Scholar 

  • Brines, M.L., Gould, J.L. (1979) Bees have rules. Science 206: 571–573.

    Google Scholar 

  • Brines, M.L., Gould, J.L. (1982) Skylight polarization patterns and animal orientation. J. Exp. Biol. 96: 69–91.

    Google Scholar 

  • Burkhardt, D. (1962) Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. In: Symposia of the Society for Experimental Biology, 16, Biological Receptor Mechanisms. Ed., J.W.L. Beament, Cambridge, University Press, pp. 86–109.

    Google Scholar 

  • Burkhardt, D. (1982) Birds, berries and UV. Naturwissenschaften 69: 153–157.

    Google Scholar 

  • Burghause, F.M.H.R. (1979) Structural specialization in the dorsofrontal region of the cricket compound eye ( Orthoptera, Grylloidea). Zool. Jb. Physiol. 83: 502–525.

    Google Scholar 

  • Cartwright, B.A., Collett, T.S. (1982) How honey bees use landmarks to guide their return to a food source. Nature 296: 560–564.

    Google Scholar 

  • Chen, H.S., Rao, C.R.N. (1968) Polarization of light on reflection by some natural surfaces. Br. J. Appl. Phys. (J. Phys. D) Ser. 2. Is 1191–1200.

    Google Scholar 

  • Collett, T.S., Land, M.F. (1978) How hoverflies compute interception courses. J. Comp. Physiol. 125: 191–204.

    Google Scholar 

  • Couet, H.G. de, Blest, A.D. (1982) The retinal acid phosphatase of a crab, Leptograpsus: characterization, and relation to the cyclical turnover of photoreceptor membrane. J. Comp. Physiol. 149: 353–362.

    Google Scholar 

  • Coulson, K.L. (1968) Effect of surface reflection on the angular and spectral distribution of skylight. J. Atmospheric Sei. 25: 759–770.

    Google Scholar 

  • Cronin, T.W., Goldsmith, T.H. (1982) Photosensitivity spectrum of crayfish rhodopsin measured using fluorescence of metarhodopsin. J. Gen. Physiol. 79: 313–332.

    Google Scholar 

  • Cummins, D., Goldsmith, T.H. (1981) Cellular identification of the violet receptor in the crayfish eye. J. Comp. Physiol. 142: 199–202.

    Google Scholar 

  • Dartnall, H.J.A. (1975) Assessing the fitness of visual pigments for their photic environments. In: Vision in fishes. Ed., M.A. Ali, New York, Plenum Press, pp. 543–563.

    Google Scholar 

  • Daumer, K. (1958) Blumenfarben, wie sie die Bienen sehen. Z. Vergl. Physiol. 41: 49–110.

    Google Scholar 

  • Davenport, D., Culler, G.J., Greaves, J.O.B., Forward, R.B., Hand, W.G. (1970) The investigation of the behavior of micro organisms by computerized television. IEEE Trans. Biomed. Eng. 17: 230–237.

    Google Scholar 

  • Dubs, A. (1982) The spatial integration of signals in the retina and lamina of the fly compound eye under different conditions of luminance. J. Comp. Physiol. 146: 321–343.

    Google Scholar 

  • Dyer, F.C., Gould, J.L. (1981) Honey bee orientation: A backup system for cloudy days. Science 214: 1041–1042.

    Google Scholar 

  • Eckert, H. (1983) The dependence of the landing response of blowflies, Calliphora, on the e-vector of linearly polarized light. Naturwissenschaften 70: 150–151.

    Google Scholar 

  • Edrich, W., Neumeyer, C., von Helversen, O. (1979) ’Anti-sun orientation’ of bees with regard to a field of ultraviolet light. J. Comp. Physiol. 134: 151–157.

    Google Scholar 

  • Egelhaaf, A., Dambach, M. (1983) Giant rhabdomes in a specialized region of the compound eye of a cricket: Cycloptiloides canariensis ( Insecta, Gryllidae). Zoomorphology 102: 65–77.

    Google Scholar 

  • Eguchi, E. (1971) Fine structure and spectral sensitivities of retinular cells in the dorsal sector of compound eyes in the dragonfly Aeschna. Z. Vergl. Physiol. 71: 201–218.

    Google Scholar 

  • Eguchi, E., Meyer-Rochow, V.B. (1983) Ultraviolet photography of forty-three species of Lepidoptera representing ten families. Annot. Zool, Japan. 56: 10–18.

    Google Scholar 

  • Eguchi, E., Waterman, T.H. (1973) Orthogonal microvillus pattern in the eighth rhabdomere of the rock crab Grapsus. Z. Zellforsch. 137: 145–157.

    Google Scholar 

  • Eguchi, E., Goto, T., Waterman, T.H. (1982) Unorthodox pattern of microvilli and intercellular junctions in regular retinal cells of the porcellanid crab Petrolisthes. Cell Tissue Res. 222: 493–513.

    Google Scholar 

  • Eguchi, E., Waterman, T.H., Akiyama, J. (1973) Localization of the violet and yellow receptor cells in the crayfish retinula. J. Gen. Physiol. 62: 355–374.

    Google Scholar 

  • Fein, A., Szuts, E.Z. (1982) Photoreceptors: their role in vision. Cambridge, Cambridge University Press, 212 pp.

    Google Scholar 

  • Filippov, M.P., Ovchinnikov, A.A. (1982) Quantum optimality of day vision and photocolorimetry. (transl.) Doklady Biophysics 266: 146–149.

    Google Scholar 

  • Franceschini, N., Hardie, R., Ribi, W., Kirschfeld, K. (1981) Sexual dimorphism in a photoreceptor. Nature 291: 241–244.

    Google Scholar 

  • Frantsevich, L.I.K. (1980) Visual Analysis of Space in Insects. Kiev, ‘Scientific Thought’, 288pp. (in Russian)

    Google Scholar 

  • Frisch, K. von (1948) Gelöste und ungelöste Rätsel der Bienensprache. Naturwissenschaften. 35: 38–43.

    Google Scholar 

  • Frisch, K. von (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tanzen der Bienen. Experientia 5: 142–148.

    Google Scholar 

  • Frisch, K. von (1965) Tanzsprache und Orientierung der Bienen. Berlin, Springer-Verlag, 578 pp.

    Google Scholar 

  • Gehreis, T. (Ed.) (1974) Planets, Stars and Nebulae. Tucson, University of Arizona Press. 1133 pp.

    Google Scholar 

  • Glas, H.W. van der (1978) Mechanisms of E-vector orientation in the honeybee. Ph.D. Thesis, Reijksuniversiteit van Utrecht. 186 pp.

    Google Scholar 

  • Glas, H.W. van der (1980a) Orientation of bees, Apis mellifera. to unpolarized colour patterns, simulating the polarized zenith skylight pattern. J. Comp. Physiol. 139: 225–241.

    Google Scholar 

  • Glas, H.W. van der (1980b) Models for directional feature extraction in celestial polarization patterns by insects. Proc. Eur. Soc. Comp. Physiol. Biochem. 2: 137–138.

    Google Scholar 

  • Goldsmith, T.H. (1972) The natural history of invertebrate visual pigments. In: Handbook of Sensory Physiology, VII/1. Ed., H.J.A. Dartnall, Berlin, Springer-Verlag, pp. 685–719.

    Google Scholar 

  • Goldsmith, T.H., Wehner, R. (1977) Restriction on rotational and translational diffusion of pigment in membranes of a rhabdomeric photoreceptor. J. Gen. Physiol. 70: 453–490.

    Google Scholar 

  • Gould, J.L. (1982) The map sense of pigeons. Nature 296: 205–211.

    Google Scholar 

  • Greaves, J.O.B. (1975) The bugsystem: the software structure for the reduction of quantized video data of moving organisms. Proc. IEEE 63: 1415–1425.

    Google Scholar 

  • Gribakin, F.G. (1981) Automatic spectrosensitometry of photoreceptors in Lethrus ( Coleoptera, Scarabaeidae). J. Comp. Physiol. 142: 95–102.

    Google Scholar 

  • Gribakin, F.G., Chesnokova, E.G. (1982) Changes in functional characteristics of the compound eye of bees caused by mutations disturbing tryptophan metabolism. (transl.) Neurophysiology 14: 57–62.

    Google Scholar 

  • Gribakin, F.G., Vishnevskaya, T.M., Polyanovskii, A.D. (1979) Polarization and spectral sensitivity of single photoreceptors of the domestic cricket. (transl.) Neurophysiology 11: 483–490.

    Google Scholar 

  • Griffin, D.R. (1982) Ecology of migration: is magnetic orientation a reality? (book review) Quart. Rev. Biol. 57: 293–295.

    Google Scholar 

  • Grundler, O.J. (1974) Elektronenmikroskopische Untersuchungen am Auge der Honigbiene (Apis mellifica). I. Untersuchungen zur Morphologie und Anordnung der neun Retinulazellen in Ommatidien verschiedener Augenbereiche und zur Perzeption linear polarisierten Lichtes. Cytobiologie 9: 203–220.

    Google Scholar 

  • Guo, A. (1980a) Elektrophysiologische Untersuchungen zur Spektral- und Polarisations-empfindlichkeit der Sehzellen von Calliphora erythrocephala. I. Scientia Sinica 23: 1182–1196.

    Google Scholar 

  • Guo, A. (1980b) Elektrophysiologische Untersuchungen zur Spektral- und Polarisations-empfindlichkeit an den Sehzellen von Calliphora erythrocephala. II. Scientia Sinica 23: 1461–1468.

    Google Scholar 

  • Guo, A. (1981a) Electrophysiologische Untersuchungen zur Spektral- und Polarisations-empfindlichkeit der Sehzellen von Calliphora erythrocephala. III. Scientia Sinica 24: 272–286.

    Google Scholar 

  • Guo, A. (1981b) Electrophysiologische Untersuchungen zur Spektral- und Polarisations-empfindlichkeit an den Sehzellen von Calliphora erythrocephala. IV. Scientia Sinica 24: 542–553.

    Google Scholar 

  • Hall, J.C. (1982) Drosophila neurogenetics. Quart. Rev. Biophysics 15: 223–479.

    Google Scholar 

  • Hardie, R.C., Kirschfeld, K. (1983) Ultraviolet sensitivity of fly photoreceptors R7. and R8: evidence for a sensitising function. Biophys. Struct. Mech. 9: 171–180.

    Google Scholar 

  • Hardie, R.C., Franceschini, N., Mclntyre, P.D. (1979) Electrophy-siological analysis of fly retina. II. Spectral and polarization sensitivity in R7 and R8. J. Comp. Physiol. 133: 23–39.

    Google Scholar 

  • Hardie, R.C., Franceschini, N., Ribi, W., Kirschfeld, K. (1981) Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J. Comp. Physiol. 145: 139–152.

    Google Scholar 

  • Harris, W.A., Stark, W.S., Walker, J.A. (1976) Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J. Physiol. 256: 415–439.

    Google Scholar 

  • Heisenberg, M., Buchner, E. (1977) The role of retinula cell types in visual behavior of Drosophila melanogaster. J. Comp. Physiol. 117: 127–162.

    Google Scholar 

  • Holtzman, E. (1981) Membrane circulation: an overview. Methods in Cell Biology 23: 379–397.

    Google Scholar 

  • Holtzman, E., Mercurio, A.M. (1980) Membrane circulation in neurons and photoreceptors: some unresolved issues. Int. Rev. Cytol. 67: 1–67.

    Google Scholar 

  • Horridge, G.A. (1980) Apposition eyes of large diurnal insects as organs adapted to seeing. Proc. Roy. Soc. Lond. B 207: 287–309.

    Google Scholar 

  • Horridge, G.A., Marčelja, L., Jahnke, R., Matič, T. (1983) Single electrode studies on the retina of the butterfly Papilio. J. Comp. Physiol. 150: 271–294.

    Google Scholar 

  • Jacobs, G.H. (1981) Comparative Color Vision, New York, Academic Press, 209 pp.

    Google Scholar 

  • Jander, R. (1957) Die optische Richtungsorientierung der roten Waldameise (Formica rufa). Z. Vergl. Physiol. 40: 162–238.

    Google Scholar 

  • Jander, R., Waterman, T.H. (1960) Sensory discrimination between polarized light and light intensity patterns by arthropods. J. Cell. Comp. Physiol. 56: 137–160.

    Google Scholar 

  • Jarvilehto, M., Moring, J. (1976) Spectral and polarization sensitivity of identified retinal cells of the fly. In: Neural Principles in Vision. Eds., F. Zettler, R. Weiler, Berlin, Springer-Verlag, pp. 214–226.

    Google Scholar 

  • Jerlov, N.G. (1976) Marine Optics. Amsterdam, Elsevier, 231 pp.

    Google Scholar 

  • Ealmijn, A.J. (1978) Electric and magnetic sensory world of sharks, skates, and rays. In: Sensory Biology of Sharks, Skates, and Rays. Eds., E.S. Hodgson and R.F. Mathewson. Arlington, Office of Naval Research, Dept. of the Navy, pp. 507–528.

    Google Scholar 

  • Kirk, M.D., Waldrop, B. and Glantz, R.M. (1982) The crayfish sustaining fibers. I. Morphological representation of visual receptive fields in the second optic neuropil. J. Comp. Physiol. 146: 175–179.

    Google Scholar 

  • Kirschfeld, K. (1972) Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z. Naturforsch. 27b: 578–579.

    Google Scholar 

  • Kirschfeld, K. (1973) Das neurale Superpositionsauge. Fortschr. Zool. 21: 229–257.

    Google Scholar 

  • Kirschfeld, K. (1979) The function of photostable pigments in fly photoreceptors. Biophys. Struct. Mechanism 5: 117–128.

    Google Scholar 

  • Kirschfeld, K. (1981) Bistable and photostable pigments in micro- villar photoreceptors. In: Sense Organs. Eds., M.S. Laverack, D.J. Cosens, Glasgow, Blackie and Sons Ltd., pp. 142–162.

    Google Scholar 

  • Kirschfeld, K., Franceschini, N. (1968) Optische Eigenschaften der Qmmatidien im Komplexauge von Musca. Kybernetik 5: 47–52.

    Google Scholar 

  • Kirschfeld, K., Reichardt, W. (1970) Optomotorische Versuche an Musca mit linear polarisiertem Licht. Z. Naturforsch. 25b: 228.

    Google Scholar 

  • Kirschfeld, K., Feiler, R., Franceschini, N. (1978) A photostable pigment within the rhabdomere of fly photoreceptors no. 7. J. Comp. Physiol. 125: 275–284.

    Google Scholar 

  • Kirschfeld, K., Lindauer, M., Martin, H. (1975) Problems of menotactic orientation according to the polarized light of the sky. Z. Naturforsch. 30c: 88–90.

    Google Scholar 

  • Koshland, D.E. (1980) Bacterial Chemotaxis as a Model Behavioral System. New York, Raven Press, 193 pp.

    Google Scholar 

  • Krebs, W., Lietz, R. (1982) Apical region of the crayfish reti- nula. Cell Tissue Res. 222: 409–415.

    Google Scholar 

  • Kretz, R. (1979) A behavioral analysis of color vision in the ant Cataglyphis bicolor ( Formicidae: Hymenoptera). J. Comp. Physiol. 131: 217–233.

    Google Scholar 

  • Kunze, P. (1979) Apposition and superposition eyes. In: Handbook of Sensory Physiology. Vol. VII/6A. Ed., H. Autrum. Berlin, Springer-Verlag, pp. 441–503.

    Google Scholar 

  • Labhart, T. (1980) Specialized photoreceptors at the dorsal rim of the honeybee’s compound eye: polarizational and angular sensitivity. J. Comp. Physiol. 141: 19–30.

    Google Scholar 

  • Labhart, T., Meyer, E.P. (1980) Ultrastructural and electrophysiological studies on a specialized area of the honey bee’s eye. Experientia 36: 698.

    Google Scholar 

  • Land, M.F. (1981a) Optics and vision in invertebrates. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed., H. Autrum, Berlin, Springer-Verlag, pp. 471–595.

    Google Scholar 

  • Land, M.F. (1981b) Optics of the eyes of Phronima and other deep-sea amphipods, J. Comp. Physiol. 145: 209–226.

    Google Scholar 

  • Laughlin, S.B. (1976) The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. J. Comp. Physiol. Ills 221–247.

    Google Scholar 

  • Laughlin, S.B. (1981) Neural principles in the visual system. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed., H. Autrum. Berlin, Springer-Verlag, pp. 133–281.

    Google Scholar 

  • Laughlin, S., McGinness, S. (1978) The structures of dorsal and ventral regions of a dragonfly retina. Cell Tiss. Res. 188: 427–447.

    Google Scholar 

  • Leggett, L.M.W. (1976) Polarized light-sensitive interneurons in a swimming crab. Nature 262: 709–711.

    Google Scholar 

  • Leggett, L.M.W. (1978) Some visual specializations of a crustacean eye. Ph.D. Thesis. Australian National University. 140 pp.

    Google Scholar 

  • Lindauer, M. & Martin, H. (1968) Die Schwereorientierung der Bienen unter dem Einfluss des Erdmagnetfelds. Z. Vergl. Physiol. 60: 219–243.

    Google Scholar 

  • Ludtke, H. (1957) Beziehungen des Feinbaues im Ruckenschwimmer- auge zu seiner Fähigkeit, polarisiertes Licht zu analysieren. Z. Vergl. Physiol. 40s 329–344.

    Google Scholar 

  • Lythgoe, J.N. (1966) Visual pigments and underwater vision. In: Light as an Ecological Factor. Eds., G.C. Evans, R. Bain-bridge, O. Rackham. Oxford, Blackwell Scientific Publications, pp. 375–391.

    Google Scholar 

  • Lythgoe, J.N. (1972) The adaptation of visual pigments to the photic environment. In: Handbook of Sensory Physiology, Vol. VII/1. Photochemistry of Vision. Ed., H.J.A. Dartnall, Berlin, Springer-Verlag, pp. 566–603.

    Google Scholar 

  • Lythgoe, J.N. (1979) The Ecology of Vision. Oxford, Clarendon Press, 244 pp.

    Google Scholar 

  • Macnab, Robert M. (1978) Bacterial motility and chemotaxis: the molecular biology of a behavioral system. CRC Crit. Rev. Biochem. 5: 291–341.

    Google Scholar 

  • Martin, F.G., Mote, M.I. (1980) An equivalent circuit for the quantitative description of inter-receptor coupling in the retina of the desert ant Cataglyphis bicolor. J. Comp. Physiol. 139: 277–285.

    Google Scholar 

  • Martin, H., Lindauer, M. (1981) The orientation of bees in the earth’s magnetic field. In: Sense Organs. Eds., M.S. Laverack, D.J. Cosens, Glasgow, pp. 328–332.

    Google Scholar 

  • McCartney, E.J. (1976) Optics of the Atmosphere. New York, Wiley, 408 pp.

    Google Scholar 

  • McFarland, W.N., Munz, F.W. (1975) The evolution of photopic visual pigments in fishes. III. Vision Res. 15: 1071–1080.

    Google Scholar 

  • Mclntyre, P., Snyder, A.W. (1978) Light propagation in twisted anisotropic media: application to photoreceptors. J. Opt. Soc. Am. 68: 149–157.

    Google Scholar 

  • Mclntyre, P., Eirschfeld, K. (1981) Absorption properties of a photostable pigment (P456) in Rhabdomere 7 of the fly. Comp. Physiol. 143: 3–15.

    Google Scholar 

  • Meinecke, C.C. (1981) The fine structure of the compound eye of the African armyworm moth, Spodoptera exempta Walk. ( Lepidoptera, Noctuidae). Cell Tissue Res. 216: 333–347.

    Google Scholar 

  • Meinecke, C.C., Langer, H. (1982) Structural reactions to polarized light of microvilli in photoreceptor cells of the moth Spodoptera. Cell Tissue Res 226: 225–229.

    Google Scholar 

  • Menzel, R. (1979) Spectral sensitivity and color vision in invertebrates. In: Handbook Sensory Physiology VII/6A. Ed., H. Autrum. Berlin, Springer Verlag, pp. 502–580.

    Google Scholar 

  • Menzel, R., Blakers, M. (1975) Functional organization of an insect ommatidium with fused rhabdom. Cytobiologie 11: 279–298.

    Google Scholar 

  • Menzel, R., Snyder, A.W. (1974) Polarized light detection in the bee, Apis mellifera. J. Comp. Physiol. 88: 247–270.

    Google Scholar 

  • Messenger, J.B. (1981) Comparative physiology of vision in molluscs. In: Handbook of Sensory Physiology, VII/6C. Ed., H. Autrum, Berlin, Springer-Verlag, pp. 93–200.

    Google Scholar 

  • Meyer-Rochow, V. (1975) Larval and adult eye of the western rock lobster, Panulirus longjpes. Cell Tissue Res. 162: 439–457.

    Google Scholar 

  • Meyer-Rochow, V.B. (1981) Electrophysiology and histology of the eye of the bumblebee Bombus hortorum (L.) ( Hymenoptera: Api-dae). J.R. Soc. New Zealand 11: 123–153.

    Google Scholar 

  • Mikkelsen, P.M. (1981) Studies on euphausiacean crustaceans from the Indian River region of Florida. I. Systematics of the Stylocheiron longicorne species-group, with emphasis on reproductive morphology. Proc. Biol. Soc. Wash. 94: 1174–1204.

    Google Scholar 

  • Mollon, J.D. (1982) Color vision. Ann. Rev. Psychol. 33: 41–85.

    Google Scholar 

  • Moore, D., Rankin, M.A. (1983) Diurnal changes in the accuracy of the honeybee foraging rhythm. Biol. Bull. 164: 471–482.

    Google Scholar 

  • Mote, M.I., Wehner, R. (1980) Functional characteristics of pho-toreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J. Comp. Physiol. 137: 63–71.

    Google Scholar 

  • Münz, F.W., McFarland, W.N. (1977) Evolutionary adaptations of fishes to the photic environment. In: Handbook of Sensory Physiology, Vol. VII/5. The Visual System invertebrates. Ed., F. Crescitelli, Berlin, Springer-Verlag, pp. 193–274.

    Google Scholar 

  • Nk’ssel, D.R. (1976). The retina and retinal projection on lamina ganglionaris of the crayfish Pacifastacus leniusculus (Dana). J. Comp. Neurol. 167: 341–360.

    Google Scholar 

  • Nassel, D.R., Waterman, T.H. (1977) Golgi EM evidence for visual information channelling in the crayfish lamina ganglionaris. Brain Res. 130: 556–563.

    Google Scholar 

  • Nassel, D.R., Waterman, T.H. (1979) Massive diurnally modulated photoreceptor membrane turnovers in crab light and dark adaptation. J. Comp. Physiol. 135: 205–216.

    Google Scholar 

  • Ninomiya, N., Tominaga, T. & Kuwabara, M. (1969) The fine structure of the compound eye of a damsel fly. Z. Zellforsch. 98: 17–32.

    Google Scholar 

  • Odselius, R., Nilsson, D.-E. (1983) Regionally different ommatidial structure in the compound eye of the water-flea Polyphemus (Cladocera, Crustacea). Proc. Roy. Soc. Lond. B 217: 177–189.

    Google Scholar 

  • Papermaster, D.S., Schneider, B.G. (1982) Biosynthesis and morphogenesis of outer segment membranes in vertebrate photoreceptor cells. In: Cell Biology of the Eye. Ed., D.S. McDevitt, New York, Academic Press, pp. 475–531.

    Google Scholar 

  • Parker, G.H. (1895) The retina and optic ganglion in decapods especially in Astacus. Mitth. Zool. Sta. Neapel 12: 1–73.

    Google Scholar 

  • Phillips, J.B., Waldvogel, J.A. (1982) Reflected light cues generate deflector-loft effect. In: Avian Navigation. Eds., F. Papi, H.G. Wallraff. Berlin, Springer Verlag, pp. 190–202.

    Google Scholar 

  • Piekos, W.B., Waterman, T.H. (1983) Nocturnal rhabdom cycling and retinal hemocyte functions in crayfish (Procambarus) compound eyes. I. Light microscopy. J. Exp. Zool. 225: 209–217.

    Google Scholar 

  • Prokopy, R.H., Owens, E.D. (1983) Visual detection of plants by herbivorous insects. Ann. Rev. Entomol. 28: 337–364.

    Google Scholar 

  • Räber, F. (1979) Retinatopographie und Sehfeldtopologie des Komplexauges von Cataglyphis bicolor (Formicidae, Hymenoptera). Diss., Univ. Zürich. 121 pp.

    Google Scholar 

  • Reichardt, W.E., Poggio, T. (1980) Visual control of flight in flies. In: Theoretical Approaches to Neurobiology. Eds., W. E. Reichardt and T. Poggio. Cambridge, MIT Press, pp. 135–150.

    Google Scholar 

  • Ribi, W.A. (1979) Do the rhabdomeric structures in bees and flies really twist? J. Comp. Physiol. 134: 109–112.

    Google Scholar 

  • Ribi, W.A. (1980) New aspects of polarized light detection in the bee in view of non-twisting rhabdomeric structures. J. Comp. Physiol. 137: 281–285.

    Google Scholar 

  • Rossel, S., Wehner, R. (1982) The bee’s map of the e-vector pattern in the sky. Proc. Nat. Acad. Sei. USA. 79: 4451–4455.

    Google Scholar 

  • Rossel, S., Wehner, R., Lindauer, M. (1978) E-vector orientation in bees. J. Comp. Physiol. 125: 1–12.

    Google Scholar 

  • Schneider, L., Gogala, M., Draslar, E., Langer, H., Schlecht, P. (1978) Structure of the ommatidia and properties of the screening pigments in the compound eyes of Ascalaphus ( Insecta, Neuroptera). Cytobiologie. 16: 274–307.

    Google Scholar 

  • Schone, H. (1980) Orientierung im Raum. Stuttgart, Wissenschaftliche Verlagsgesellshaft, 377 pp.

    Google Scholar 

  • Schwind, R. (1983) A polarization-sensitive response of the flying water bug Notonecta glauca to UV light. J. Comp. Physiol. 150: 87–9lT ~~

    Google Scholar 

  • Seliger, H.H., Lall, A.B., Lloyd, J.E., Biggley, W.H. (1982a) The colors of firefly bioluminescence I. Optimization model. Photochem. Photobiol. 36: 673–680.

    Google Scholar 

  • Seliger, H.H., Lall, A.B., Lloyd, J.E., Biggley, W.H. (1982b) The colors of firefly bioluminescence. II. Experimental evidence for the optimization model. Photochem. Photobiol. 36: 681–688.

    Google Scholar 

  • Shaw, S.R. (1969) Sense-cell structure and interspecies comparisons of polarized light absorption in arthropod compound eyes. Vision Res. 9: 1031–1040.

    Google Scholar 

  • Shaw, S.R. (1981) Anatomy and physiology of identified non-spiking cells in the photoreceptor-lamina complex of the compound eye of insects, especially Diptera. In: Neurones Without Impulses. Eds., A. Roberts, B.M.H. Bush, Cambridge, Cambridge University Press, pp. 61–116.

    Google Scholar 

  • Shaw, S.R., Stowe, S. (1982) Photoreception. In: The Biology of Crustacea, Vol. 3. Ed., D.E. Bliss, New York, Academic Press, pp. 292–367.

    Google Scholar 

  • Silberglied, R.E. (1979) Communication in the ultraviolet. Ann. Rev. Evol. Syst. 10: 373–398.

    Google Scholar 

  • Smola, U., Tscharntke, H. (1979) Twisted rhabdomeres in the dipteran eye. J. Comp. Physiol. 133: 291–297.

    Google Scholar 

  • Smola, U., Wunderer, H. (1981a). Twisting of blowfly (Calliphora ervthrocephala Meigen) (Diptera, Calliphoridae) rhabdomeres: an in vivo feature unaffected by preparation of fixation. Int. J. Insect Morphol. and Embryol. 10: 331–344.

    Google Scholar 

  • Smola, U. & Wunderer, H. (1981b) Fly rhabdomeres twist in vivo. J. Comp. Physiol. 142: 43–49.

    Google Scholar 

  • Snyder, A.W. (1973) Polarization sensitivity of individual retinula cells. J. Comp. Physiol. 83: 331–360.

    Google Scholar 

  • Snyder, A.W. (1979) The physics of vision in compound eyes. In: Handbook of Sensory Physiology. Vol. VII/6A. Ed., H. Autrum. Berlin, Springer-Verlag, pp. 225–315.

    Google Scholar 

  • Snyder, A.W., Laughlin, S.B. (1975) Dichroism and absorption by photoreceptors. J. Comp. Physiol. 100: 101–116.

    Google Scholar 

  • Sommer, E.W. (1979) Untersuchungen zur topografischen Anatomie der Retina und zur Sehfeldtopologie im Auge der Honigbiene, Apis mellifera (Hymenoptera). Ph.D. Thesis, Univ. Zurich. 180 pp.

    Google Scholar 

  • Stark, W.S., Carlson, S.D. (1982) Ultrastructural pathology of the compound eye andQ#P;tic neuropiles of the retinal degeneration mutant (w rdgBKS222) Drosophila melanogaster. Cell Tissue Res. 225: 11–22.

    Google Scholar 

  • Stowe, S. (1980) Rapid synthesis of photoreceptor membranes and assembly of new microvilli in a crab at dusk. Cell Tissue Res. 211: 419–440.

    Google Scholar 

  • Strausfeld, N.J., Nässei, D.R. (1981) Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed., H. Antrum. Berlin, Springer-Verlag, pp. 1–132.

    Google Scholar 

  • Vogt, K. (1983) Is the fly visual pigment a rhodopsin? Z. Naturforsch. 38c: 329–333.

    Google Scholar 

  • Vogt, K., Kirschfeld, K. (1983) Sensitizing pigment in the fly. Biophys. Struct. Mech. 9: 319–328.

    Google Scholar 

  • Wachmann, E. (1979) Untersuchungen zur Feinstruktur der Augen von Bockkäfern ( Coleoptera, Cerambycidae). Zoomorphologie 92: 19–48.

    Google Scholar 

  • Wada, S. (1974a) Spezielle randzonale Qmmatidien der Fliegen (Diptera: Brachycera ): Architektur und Verteilung. Z. Morphol. Tiere. 77: 87–125.

    Google Scholar 

  • Wada, S. (1974b) Spezielle randzonale Qmmatidien von Calliphora ervthrocephala Meig. (Diptera, Calliphoridae ): Architektur der zentralen Rhabdomeren-Kolumne und Topographie im Komplexauge. Int. J. Insect Morphol. Embryol. 3: 397–424.

    Google Scholar 

  • Wada, S. (1975) Morphological duality of the retinal pattern in flies. Experientia 31: 921–923.

    Google Scholar 

  • Waterman, T.H. (1966a) Information channeling in the crustacean retina. In: Proceedings of the symposium on information processing in sight sensory systems. Ed., P.W. Nye. Pasadena, California Institute of Technology, pp. 48–56.

    Google Scholar 

  • Waterman, T.H. (1966b) Specific effects of polarized light on organisms. In: Environmental Biology, Eds., P.L. Altman and D.S. Dittmer, Bethesda, Fed. Am. Soc. Exp. Biol., pp. 155–165.

    Google Scholar 

  • Waterman, T.H. (1966c) Systems analysis and the visual orientation of animals. Am. Sei. 54: 15–45.

    Google Scholar 

  • Waterman, T.H. (1968) Systems theory and biology—view of a biologist. In: Systems Theory and Biology. Ed., M.D. Mesarovic. New York, Springer-Verlag, pp. 1–37.

    Google Scholar 

  • Waterman, T.H. (1973) Responses to polarized light: Animals. In: Biology Data Book (Edition 2), vol. 2. Eds., P.L. Altman, D.S. Dittmer. Bethesda, Fed. Amer. Soc. Exp. Biol., pp. 1272–1289.

    Google Scholar 

  • Waterman, T.H. (1975a) Natural polarized light and e-vector dis-crimination by vertebrates. In: Light as an Ecological Factor: II. Eds., 6.C. Evans, R. Bainbridge, O. Rackham, Oxford, Blackwell, pp. 305–335.

    Google Scholar 

  • Waterman, T.H. (1975b) The optics of polarization sensitivity. In: Photoreceptor Optics. Eds., A.W. Snyder and R. Menzel. Berlin, Springer-Verlag, pp. 339–371.

    Google Scholar 

  • Waterman, T.H. (1977) The bridge between visual input and central programming in crustaceans. In: Identified Neurons and Behavior in Arthropods. Ed., G. Hoyle. New York, Plenum, pp. 371–386.

    Google Scholar 

  • Waterman, T.H. (1981) Polarization sensitivity. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed., H. Autrum. Berlin, Springer-Verlag, pp. 281–471.

    Google Scholar 

  • Waterman, T.H. (1982) Fine structure and turnover of photoreceptor membranes. In: Visual Cells in Evolution. Ed., J. Westfall. New York, Raven, pp. 23–41.

    Google Scholar 

  • Waterman, T.H., Aoki, K. (1974) E-vector sensitivity patterns in the goldfish optic tectum. J. Comp. Physiol. 95: 13–27.

    Google Scholar 

  • Waterman, T.H., Fernandez, H.R. (1970) E-vector and wavelength discrimination by retinular cells of the crayfish Procambarus. Z. Vergl. Physiol 68: 154–174.

    Google Scholar 

  • Waterman, T.H., Horch, K.W. (1966) Mechanism of polarized light perception. Science. 154: 467–475.

    Google Scholar 

  • Waterman, T.H., Piekos, W.B. (1983) Nocturnal rhabdom cycling and retinal hemocyte functions in crayfish (Procambarus) compound eyes. II. Transmission electron microscopy and acid phosphatase localization. J. Exp. Zool. 225: 219–231.

    Google Scholar 

  • Waterman, T.H., Wiersma, C.A.G. (1963) Electrical responses in decapod crustacean visual systems. J. Cell. Comp. Physiol. 61: 1–16.

    Google Scholar 

  • Waterman, T.H., Fernandez, H.R., Goldsmith, T.H. (1969) Dichroism of photosensitive pigment in rhabdoms of the crayfish Orconectes. J. Gen. Physiol. 54: 415–432.

    Google Scholar 

  • Wehner, R. (1976) Structure and function of the peripheral pathway in hymenopterans. In: Neuronal Principles in Vision. Eds., F. Zettler & R. Weiler. Berlin, Springer-Verlag, pp. 280–333.

    Google Scholar 

  • Wehner, R. (1981) Spatial vision in arthropods. In: Handbook of Sensory Physiology. Vol. VII/6C. Ed., H. Autrum. Berlin, Springer-Verlag, p. 287–617.

    Google Scholar 

  • Wehner, R. (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsbl. Naturf. Ges. Zürich 184: 1–132.

    Google Scholar 

  • Wehner, R., Bernard, G.D. (1980) Intracellular optical physiology of the bee’s eye. II. Polarizational sensitivity. J. Comp. Physiol. 137: 205–214.

    Google Scholar 

  • Wehner, R., Meyer, E. (1981) Rhabdomeric twist in bees - artefact or in vivo structure? J. Comp. Physiol. 142: 1–17.

    Google Scholar 

  • Wehner, R., Srinivasan, M.V. (1981) Searching behavior of desert ants, genus Cataglyphis ( Formicidae, Hymenoptera). J. Comp. Physiol. 142: 315–338.

    Google Scholar 

  • Wehrhahn, C. (1976) Evidence for the role of receptors R7/8 in the orientation behaviour of the fly. Biol. Cybern. 21: 213–220.

    Google Scholar 

  • Wellington, W.G. (1974) A special light to steer by. Nat. Hist. 83: 46–53.

    Google Scholar 

  • Wellington, W.G., Fitzpatrick, S.M. (1981) Territoriality in the drone fly, Eristalis tenax ( Diptera: Syrphidae). Can. Entomologist. 113: 695–704.

    Google Scholar 

  • Wellington, W.G., Sullivan, C.R. & Henson, W.R. (1951) Polarized light and body temperature level as orientation factors in the light reactions of some hymenopterous and lepidopterous larvae. Can. J. Zool. 29: 339–351.

    Google Scholar 

  • Wiersma, C.A.G. & Yamaguchi, T. (1966) The neuronal components of the optic nerve of the crayfish as studied by single unit analysis. J. Comp. Neurol. 128: 333–358.

    Google Scholar 

  • Williams, D.S. (1981) Twisted rhabodmeres in the compound eye of a tipulid fly ( Diptera ). Cell Tissue Res. 217: 625–632.

    Google Scholar 

  • Williams, D.S. (1982) Ommatidial structure in relation to turnover of photoreceptor membrane in the locust. Cell Tissue Res. 225: 595–617.

    Google Scholar 

  • Wilson, R.S. (1977) Light elicited behavior of the marine dinoflagellate, Ceratium dens. Ph.D. Thesis, University of California, Santa Barbara. 160 pp.

    Google Scholar 

  • Wolf, R., Gebhardt, B., Gademann, R., Heisenberg, M. (1980) Polarization sensitivity of course control in Drosophila melanogaster. J. Comp. Physiol. 139: 177–191.

    Google Scholar 

  • Wunderer, H., Smola, U. (1982a) Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala Meigen (Diptera:Calliphoridae): an eye region specialized for the detection of polarized light. Int. J. Insect Morphol. Embryol. 11: 25–38.

    Google Scholar 

  • Wunderer, H., Smola, U. (1982b) Morphological differentiation of the central visual cells R7/8 in various regions of the blowfly eye. Tissue and Cell 14: 341–358.

    Google Scholar 

  • Yamaguchi, T. (1967) Mechanism of polarized light perception and its neural processes through the optic nerves in crayfish. Zool. Mag. 76: 443 (Abstr.)

    Google Scholar 

  • Yamaguchi, T., Katagiri, Y., Ochi, K. (1976) Polarized light responses from retinula cells and sustaining fibers in the mantis shrimp. Biol. J. Okayama Univ. 17: 61–66.

    Google Scholar 

  • Young, R.W. (1978) Visual cells, daily rhythms, and vision research. Vision Res. 18: 573–578.

    Google Scholar 

  • Zeil, J. (1983) Sexual dimorphism in the visual system of flies: the divided brain of male Bibionidae ( Diptera ). Cell Tissue Res. 229: 591–610.

    Google Scholar 

  • Zrenner, E. (1983) Neurophysiological Aspects of Color Vision in Primates. Berlin, Springer-Verlag, 218 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Waterman, T.H. (1984). Natural Polarized Light and Vision. In: Ali, M.A. (eds) Photoreception and Vision in Invertebrates. NATO ASI Series, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2743-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2743-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9699-7

  • Online ISBN: 978-1-4613-2743-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics