Skip to main content

Oncogene Expression and Arrangement in Human Leukemia

  • Chapter
Biology and Therapy of Acute Leukemia

Part of the book series: Developments in Oncology ((DION,volume 33))

  • 37 Accesses

Abstract

It is generally assumed that human cancer results from a genetic mutation or series of mutations. There is a great deal of indirect evidence supporting this hypothesis. Studies with the X-linked G-6-PD marker indicate that most human malignancies are clonal (1) suggesting the occurrence of a rare event(s) in their development. Individuals with inherited defects in DNA repair such as Bloom’s syndrome and xeroderma pigmentosa are more susceptible to certain malignancies than normals (2). Most carcinogens or carcinogen metabolites are thought to act by binding to and altering DNA. Specific chromosome abnormalities are found in malignant cells but not in normal cells from patients with certain malignancies indicating the presence of specific genetic rearrangements in these particular cancers. However, until recently the specific genes effected by mutations producing cancer were completely unknown. This situation has changed remarkably in the past several years with the isolation and characterization of specific human genes (oncogenes) that may be intimately related to malignant transformation. Amplification, point mutations and chromosome rearrangements involving certain of these oncogenes have been described in various human malignancies including the leukemias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fialkow PJ: Clonal origin of human tumors. Biochem. Biophys. Acta. 458: 283–321, 1976.

    PubMed  CAS  Google Scholar 

  2. Knudson AG: Genetic factors in human malignancy. Advances in Human Genetics, Harris H (ed), pp. 1–51, 1977.

    Google Scholar 

  3. Bishop JM: Oncogenes. Scientific American 246: 80–94, 1982.

    CAS  Google Scholar 

  4. Bishop JM: Enemies within: The genesis of retrovirus oncogenes. Cell 23: 5–6, 1981.

    Article  PubMed  CAS  Google Scholar 

  5. Cooper GM: Cellular transforming genes. Science 217: 801–806, 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Murray MJ, Shilo B-Z, Shih C, Cowing D, Hsu HW, Weinberg RA: Three different human tumor cell lines contain different oncogenes. Cell 25: 355–361, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Weinberg RA: A molecular basis of cancer. Scientific American 249: 126–142, 1983.

    Article  PubMed  CAS  Google Scholar 

  8. Der C, Krontiris T, Cooper G: Transforming genes of human bladder and lung carcinoma lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc. Natl. Acad. Sci. USA 79: 3637–3640, 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Parada L, Tabin C, Shih C, Weinberg R: Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297: 474–478, 1982.

    Article  PubMed  CAS  Google Scholar 

  10. Santos E, Tronick S, Aaronson S, Pulciani S, Barbacid M: The T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of Balb and Harvey-MSV transforming genes. Nature 298: 343–347, 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Shimizu et al: Three human transforming genes are related to the viral ras oncogenes. Proc. Natl. Acad. Sci. USA 80: 2112–2116, 1983.

    Article  PubMed  CAS  Google Scholar 

  12. Tabin C, Bradley D, Bargmann C, Weinberg R, Papageorge A, Scolnick E, Dhar R, Lowy D, Chang E: Mechanism of activation of a human oncogene. Nature 300: 143–149, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Reddy E, Reynolds R, Santos E, Barbacid M: A point mutation is responsible for the acquisition of transforming properties by the T24 bladder carcinoma oncogene. Nature 300: 149–155, 1982.

    Article  PubMed  CAS  Google Scholar 

  14. Taparowsky E, Suard Y, Fascuro O, Shimizu K, Goldfarb M, Wigler M: Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300: 762–765, 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Muller R, Tremblay JM, Adamson ED, Verma I: Tissue and cell-type specific expression of two human c-onc genes. Nature 304: 454–456, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Muller R, Tremblay JM, Adamson ED, Verma I: Tissue and cell-type specific expression of two human c-onc genes. Nature 304: 454–456, 1983.

    Article  PubMed  CAS  Google Scholar 

  17. Kelly K, Cochran B, Stiles C, Leder P: Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet derived growth factor. Cell 35: 603–610, 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnsson, A, Wasteson A, Westermark B, Heldin C, Huang J, Devel T: Platelet-derived growth factor is structurally related to the putative transforming protein p28s1s of simian sarcoma virus. Nature 304: 35–39, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Doolittle R, Hunkapillar M, Hood L, Devare S, Robbins K, Aaronson S, Antoniades H: Simian sarcoma virus onc gene, v-sis is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221: 275–277, 1983.

    Article  PubMed  CAS  Google Scholar 

  20. Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield M: Close similarity of epidermal growth factor receptor and v-erb B oncogene protein sequences. Nature 307: 521–527, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Collins S, Gallo R, Gallagher R: Continuous growth and differentiation of human myeloid leukemia cells in suspension culture. Nature 270: 347–349, 1977.

    Article  PubMed  CAS  Google Scholar 

  22. Collins S, Ruscetti F, Gallagher R, Gallo R: Terminal differentiation of human promyelocytic leukemia induced by dimethylsulfoxide and other polar compounds. Proc. Natl. Acad. Sci. USA 75: 2458–2462, 1978.

    Article  PubMed  CAS  Google Scholar 

  23. Collins S, Groudine M: Amplification of endogenous mycrelated sequences in a human myeloid leukemia cell line. Nature 298: 679–681, 1982.

    Article  PubMed  CAS  Google Scholar 

  24. Dalla-Favera R, Wong-Staal F, Gallo R: Onc gene amplification of promyelocytic leukemia cell line HL-60 and primary leukemia cells of the same patient. Nature 299: 61–63, 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Westin E et al: Expression of cellular homologues of retroviral onc genes in human hematopoietic cells. Proc. Natl. Acad. Sci. USA 79: 2490–2494, 1982.

    Article  PubMed  CAS  Google Scholar 

  26. Lozzio CB, Lozzio BB: Human chronic myelogenous leukemia cell line with positive Philadelphia chromosome. Blood 45: 321–334, 1975.

    PubMed  CAS  Google Scholar 

  27. Collins S, Groudine M: Rearrangement and amplification of c-abl sequences in the human chronic myelogenous leukemia cell line K-562. Proc. Natl. Acad. Sci. USA 80: 4813–4817, 1983.

    Article  PubMed  CAS  Google Scholar 

  28. Dalla-Favera R et al: Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Natl. Acad. Sci. USA 79: 7824–7827, 1982.

    Article  PubMed  CAS  Google Scholar 

  29. Taub R et al: Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and mouse plasmacytoma cells. Proc. Natl. Acad. Sci. USA 79: 7837–7841, 1982.

    Article  PubMed  CAS  Google Scholar 

  30. Erikson J, AR-Rushdi A, Drwinga H, Nowell P, Croce C: Transcriptional activation of the translocated c-myc oncogene in Burkitt lymphoma. Proc. Natl. Acad. Sci. USA 80: 820–824, 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Hayday A, Gillies S, Saito H, Wood C, Wiman K, Hayward W, Tonegawa S: Activation of a translocated c-myc gene by an enhancer in the immunoglobulin heavy chain locus. Nature 307: 334–340, 1984.

    Article  PubMed  CAS  Google Scholar 

  32. Rabbitts T, Hamlyn P, Baer R: Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma. Nature 306: 760–765, 1983.

    Article  PubMed  CAS  Google Scholar 

  33. deKlein A et al: A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukemia. Nature 300: 765–767, 1982.

    Article  CAS  Google Scholar 

  34. Heisterkamp N, Stephenson J, Groffen J, Hansen P, deKlein A, Bartram C, Grosveld G: Localization of the c-abl oncogene adjacent to a translocation breakpoint in chronic myelocytic leukemia. Nature 306: 239–242, 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Groffen J, Stephenson J, Heisterkamp N, deKlein A, Bartram C, Grosveld G: Philadelphia chromosome breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36: 93–99, 1984.

    Article  PubMed  CAS  Google Scholar 

  36. Murray M, Cunningham J, Parada L, Dantry F, Lebowitz P, Weinberg R: The HL-60 transforming sequence: A ras oncogene coexisting with altered myc gene in hematopo e1 tic tumors. Cell 33: 749–757, 1983.

    Article  PubMed  CAS  Google Scholar 

  37. Diamond A, Cooper G, Ritz J, Lane M: Identification and molecular cloning of the human Blym transforming gene activated in Burkitt’s lymphomas. Nature 305: 112–116, 1983.

    Article  PubMed  CAS  Google Scholar 

  38. Land H, Parada L, Weinberg R: Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Collins, S.J. (1985). Oncogene Expression and Arrangement in Human Leukemia. In: Baker, L., Valeriote, F., Ratanatharathorn, V. (eds) Biology and Therapy of Acute Leukemia. Developments in Oncology, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2609-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2609-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9633-1

  • Online ISBN: 978-1-4613-2609-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics