Skip to main content

Part of the book series: Biochemistry of the Elements ((BOTE,volume 4))

  • 127 Accesses

Abstract

One-electron reductions of dioxygen form superoxide ion, O 2 (Sawyer and Valentine, 1981). Although triplet dioxygen is a rather poor one-electron oxidant, superoxide ion is a strong one-electron oxidant if protons are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abernethy, J. L., Steinman, H. M., and Hill, R. L., 1974. Bovine erythrocyte superoxide dismutase: Subunit structure and sequence location of the intrasubunit disulfide bond, J Biol. Chem. 249: 7339–7347.

    PubMed  CAS  Google Scholar 

  • Anbar, M., Meyerstein, D., and Neta, P., 1966. Reactivity of aliphatic compounds towards hydroxyl radicals, J. Am. Chem. Soc. (B) 1966: 742–747.

    Google Scholar 

  • Andrews, L., 1968. Matrix infrared spectrum and bonding in the lithium superoxide molecule, L1O2, J. Am. Chem. Soc. 103: 4965–4966.

    Google Scholar 

  • Aubry, J. M., Rigaudy, J., Ferradini, C., and Pucheault, J., 1981. A search for singlet oxygen in disproportionation of superoxide anion, J. Am. Chem. Soc. 103: 4965–4966.

    Article  CAS  Google Scholar 

  • Audley, G. J., Baulch, D. L., and Campbell, I. M., 1981. Gas-phase reactions of hydroxyl radicals with aldehyde in flowing H202 + N02 + CO mixtures, J. Chem. Soc. Faraday Trans. 1 1981: 2451–2549.

    Google Scholar 

  • Aust, S. E., Roerig, D. L., and Pederson, T. C. P., 1972. Evidence for superoxide generation by NADPH-cytochrome c reductase of rat liver microsomes, Biochem. Biophys. Res. Commun. 47: 1133–1137.

    Article  PubMed  CAS  Google Scholar 

  • Azzi, A., Montecrucco, C. and Richiter, C., 1975. The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biological membranes, Biochem. Biophys. Res. Commun. 65: 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Bannister, J. V., Bannister, W. H., Bray, R. C., Fielden, E. M., Roberts, P. B., and Rotilio, G., 1973. The superoxide dismutase activity of human erythrocuprein, FEBS Lett. 32: 303–306.

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp, C., and Fridovich, L., 1970. A mechanism of production of ethylene from methional: The generation of hydroxyl radical by xanthine oxidase, J. Biol. Chem. 245: 4641–4646.

    PubMed  CAS  Google Scholar 

  • Behar, D., Czapski, G., Rabini, J., Dorfman, L. M., and Schwarz, H., 1970. The acid dissociation constant and decay kinetics of the perhydroxyl radical, J. Phys. Chem. 74: 3209–3213.

    Article  CAS  Google Scholar 

  • Bellus, D., 1979. Physical quenchers of singlet molecular oxygen, in Advances in Photochemistry, Vol. 11, J. M. Pitts, Jr., G. S. Hammond, K. Gollnick, and D. Grosjean (eds.), John Wiley, New York, pp. 105–205.

    Chapter  Google Scholar 

  • Bielski, B. H. J., 1978. Reevaluation of the spectral and kinetic properties of HO2 and O2 free radicals, Photochem. Photobiol. 28: 645–649.

    Article  CAS  Google Scholar 

  • Bielski, B. H. J., and Allen, A. D., 1977. Mechanism of the disproportionation of superoxide radicals, J. Phys. Chem. 81: 1048–1050.

    Article  CAS  Google Scholar 

  • Bielski, B. H. J., and Richter, H. W., 1977. A study of the superoxide radical chemistry by stopped-flow radiology and radiation-induced oxygen consumption, J. Am. Chem. Soc. 99: 3019–3023.

    Article  CAS  Google Scholar 

  • Bielski, B. H. J., and Saito, E., 1971. Deuterium isotope effect on the decay kinetics of perhydroxyl radical, J. Phys. Chem. 75: 2263–2266.

    Article  CAS  Google Scholar 

  • Bors, W., Saran, M., Longfelder, E., Michel, C., Fuchs, C., and Frenzel, C., 1978. Detection of oxygen radicals in biological systems, Photochem. Photobiol. 28: 629–638.

    Article  PubMed  CAS  Google Scholar 

  • Bors, W., Michel, C., and Saran, M., 1979. Superoxide anions do not react with hydroperoxides, FEBS Lett. 107: 403–406.

    Article  PubMed  CAS  Google Scholar 

  • Britton, L., Malinouski, D. P., and Fridovich, 1., 1978. Superoxide dismutase and oxygen metabolism in Streptococcus faecalis and comparisons with other organisms, J. Bacteriol. 134: 229–236.

    PubMed  CAS  Google Scholar 

  • Chern, C.-I., and San Filippo, J., 1977. The reaction of superoxide with hydrazines, hydrazones, and related compounds, J. Org. Chem. 42: 178–180.

    Article  CAS  Google Scholar 

  • Corey, E. J., Nicolaou, K. C., Shibasaki, M., Machida, Y., and Shiner, C. S., 1975. Superoxide ion as a synthetically useful oxygen nucleophile, Tetrahedron Lett. 1975: 3183–3186.

    Article  Google Scholar 

  • Czapski, G., 1978, Photochem. Photobiol. 28:926 (in the Discussion).

    Article  Google Scholar 

  • Czapski, G., and Ilan, Y. A., 1978. On the generation of the hydroxylation agent from superoxide radical: Can the Haber-Weiss reaction be the source of OH radicals?, Photochem. Photobiol. 28: 651–653.

    Article  CAS  Google Scholar 

  • Danen, W. D. and Arudi, R. L., 1978. Generation of singlet oxygen in the reaction of superoxide anion radical with diacyl peroxides, J. Am. Chem. Soc. 100: 3944–3945.

    CAS  Google Scholar 

  • Danen, W. C., and Warner, R. J., 1977. The remarkable nucleophilicity of superoxide anion radical: Rate constants for reactions of superoxide with aliphatic bromides, Tetrahedron Lett. 1977: 989–992.

    Article  Google Scholar 

  • Darnall, K., Winer, A. M., Lloyd, A. C., and Pitts, J. N., Jr., 1976. Relative rate constants for the reaction of OH radicals with selected C6 and C7 alkanes and alkenes at 305 ± 2°K, Chem. Phys. Lett. 44: 415–418.

    CAS  Google Scholar 

  • Darnall, K. R., Atkinson, R., and Pitts, J. N., Jr., 1978. Rate constants for the reaction of the OH radical with selected alkanes at 300°K, J. Phys. Chem. 82: 1581–1584.

    Article  CAS  Google Scholar 

  • Fee, J. A., 1980. A comment on the hypothesis that oxygen toxicity is mediated by superoxide, in Oxygen and Life, Burlington House, London, Royal Society of London, pp. 77–97.

    Google Scholar 

  • Fee, J. A., and Hildebrand, P. G., 1974. On the development of a well-defined source of superoxide ion for studies with biological studies, FEBS Lett. 39: 79–82.

    Article  PubMed  CAS  Google Scholar 

  • Ferradini, C., Foos, J., Houee, C., and Pauchault, J., 1978. The reaction between superoxide anion and hydrogen peroxide, Photochem. Photobiol. 28: 697–700.

    Article  CAS  Google Scholar 

  • Fielden, E. M., Cohen, G., Bors, W., and Czapski, G., 1978. Photochem. Photobiol. 28:674–675 (in the Discussion).

    Article  Google Scholar 

  • Finkelstein, E., Rosen, G. M., and Rauchman, E. J., 1980. Spin trapping of superoxide and hydroxyl radical: Practical aspects, Arch. Biochem. Biophys. 200: 1–6.

    Article  CAS  Google Scholar 

  • Foote, C. S., 1978. Untitled paper, Photochem. Photobiol. 28: 718–740.

    Google Scholar 

  • Foote, C. S., Shook, F. C., and Abakerli, R. A., 1980a. Chemistry of superoxide ion. 4. Singlet oxygen is not a major product of dismutation, J. Am. Chem. Soc. 102: 2503–2504.

    Article  CAS  Google Scholar 

  • Foote, C. S., Abakerli, R. B., Clough, R. L., and Shook, F. C., 1980b. On the question of singlet oxygen production in leucocytes, macrophages, and the dismutation of superoxide anion, in Biological and Clinical Aspects of Superoxide and Superoxide Dismutase, W. H. Bannister and

    Google Scholar 

  • J. V. Bannister (eds.), Proceedings of the Federation of European Biochemical Societies Symposium No. 62, Elsevier, New York, pp. 222–230.

    Google Scholar 

  • Fridovich, I., 1974. Superoxide dismutase, Adv. Enzymol. 41: 35–97.

    PubMed  CAS  Google Scholar 

  • Fridovich, I., 1978a. The biology of oxygen radicals, Science 201: 875–880.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich, I., 1978b. Superoxide radicals, superoxide dismutases, and the aerobic lifestyle, Photochem. Photobiol. 28: 733–740.

    Google Scholar 

  • Frimer, A. A., and Rosenthal, 1., 1978. Chemical reactions of superoxide anion radical in aprotic solvents, Photochem. Photobiol. 28: 711–719 (and Discussion following).

    Google Scholar 

  • Frimer, A. A., Rosenthal, I., and Hoz, S., 1977. The reaction of superoxide anion radical with electron poor olefins, Tetrahedron Lett. 1977: 4631–4634.

    Article  Google Scholar 

  • Gibian, M. J., and Ungermann, T., 1976. Reaction of tert-butyl hydroperoxide anion with dimethyl sulfoxide: On the pathway of the superoxide-alkyl halide reaction, J. Org. Chem. 41: 2500–2502.

    Article  CAS  Google Scholar 

  • Gregory, E. M., Yost, F. J., Jr., and Fridovich, I., 1973. Superoxide dismutases of Escherichia coli: Intracellular localizations and functions, J. Bacteriol. 115: 987–991.

    CAS  Google Scholar 

  • Guiraud, H. J., and Foote, C. S., 1976. Chemistry of superoxide ion. III. Quenching of singlet oxygen, J. Am. Chem. Soc. 98: 1984–1986.

    Article  CAS  Google Scholar 

  • Haber, F., and Weiss, J., 1934. The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. London Ser. A 147: 332–351.

    Article  CAS  Google Scholar 

  • Heicklen, J., 1981. The correlation of rate coefficients for H-atom abstraction by HO radicals with C-H bond dissociation enthalpies, Int. J. Chem. Kinet. 13: 651–665.

    Article  CAS  Google Scholar 

  • Hiller, K. O., Mastoch, B., Gobt, M., and Asmus, L. D., 1981. Mechanism of OH radical induced oxidation of methionine in aqueous solution, J. Am. Chem. Soc. 103: 2734–2743.

    Article  CAS  Google Scholar 

  • Hirata, F., and Hayaishi, O., 1975. Studies on indoleamine 2,3-dioxygenase. I. Superoxide anion as substrate, J. Biol. Chem. 250: 5960–5966.

    PubMed  CAS  Google Scholar 

  • Hodgson, E. K., and Fridovich, I., 1973. Reversal of the superoxide dismutase reaction, Biochem. Biophys. Res. Commun. 54: 270–274.

    Article  PubMed  CAS  Google Scholar 

  • House, H. O., 1972. Modern Synthetic Reactions, Benjamin/Cummings, Menlo Park, California, pp. 307–312.

    Google Scholar 

  • Howard, D. J., 1980. Kinetic study of the equilibrium HO2 + NO;:± OH + NO2 and the thermochemistry of HO2, J. Am. Chem. Soc. 102: 6937–6941.

    Article  CAS  Google Scholar 

  • Ilan, Y. A., Meisel, D., and Czapski, G., 1974. The redox potential of the O2-O2 system in aqueous media, Isr. J. Chem. 12: 891–895.

    CAS  Google Scholar 

  • Jeong, K.-M., and Kaufman, F., 1982. Kinetics of the reaction of hydroxyl radical with methane and with nine Cl- and F-substituted methanes. 2. Calculation of rate parameters as a test of transition state theory, J. Phys. Chem. 88: 1816–1821.

    Article  Google Scholar 

  • Johnson, R. A., and Nidy, E. G., 1975. Superoxide chemistry: A convenient synthesis of dialkyl peroxides, J. Org. Chem. 40: 1680–1681.

    Article  CAS  Google Scholar 

  • Keele, B. B., Jr., McCord, J. M., and Fridovich, I., 1970. Superoxide dismustase from Escherichia coli B, J. Biol. Chem. 245: 6176–6181.

    PubMed  CAS  Google Scholar 

  • Khan, A. U., 1978. Activated oxygen: Singlet molecular oxygen and superoxide anion, Photochem. Photobiol. 28: 615–626 (and Dicussion following).

    Google Scholar 

  • Klug-Roth, D., Fridovich, I., and Rabani, J., 1973. Pulse radiolytic investigations of superoxide catalyzed disproportionation: Mechanism for bovine superoxide dismutase, J. Am. Chem. Soc. 95: 2786–2790.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, S., and Ando, W., 1979. Co-oxidation of 1, 3-diphenylisobenzofuran by the Haber-Weiss reaction: Is singlet oxygen concerned in this reaction?, Biochem. Biophys. Res. Commun. 188: 676–681.

    Article  Google Scholar 

  • Koppenol, W. H., and Butler, J., 1977. Mechanism of reactions involving singlet oxygen and the superoxide anion, FEBS Lett. 83: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Koppenol, W. H., Butler, J., and vanLeeuwen, J. W., 1978. The Haber-Weiss cycle, Biochem. Biophys. Res. Commun. 188: 655–658 (and Discussion following).

    Google Scholar 

  • Lavelle, F., McAdam, M. E., Fielden, E. M., Roberts, P. B., Puget, K., and Michelson, A. M., 1977. A pulse-radiolytis study of the catalytic mechanism of the iron-containing superoxide dismutase from Photobacterium leiognathi, Biochem. J. 161: 2–11.

    Google Scholar 

  • Lee-Ruff, E., 1977. The organic chemistry of superoxide, Chem. Soc. Rev. 6: 195–214.

    Article  CAS  Google Scholar 

  • Lieberman, R. A., and Fee, J. A., 1973. Preliminary report on the electron paramagnetic resonance spectra of singlet crystals of bovine erythrocyte superoxide dismutase, J. Biol. Chem. 248: 7617–7619.

    PubMed  CAS  Google Scholar 

  • Liotta, C. L., and Harris, H. P., 1974. The chemistry of “naked” anions. I. Reactions of the 18crown-6 complex of potassium fluoride with organic substrates in aprotic solvents, J. Am. Chem. Soc. 96: 2250–2252.

    Article  CAS  Google Scholar 

  • Marklund, S., 1976. Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase, J. Biol. Chem. 251: 7504–7507.

    PubMed  CAS  Google Scholar 

  • Matsumoto, S., and Matsuo, M., 1977. The reaction of a a-tocopherol model compound with K02, a new oxidation product of 6-hydroxy-2,2,5,7,8-penta-methylchroman, Tetrahedron Lett. 1977: 1999–2000.

    Article  Google Scholar 

  • May, S. W., Abbott, B. J., and Felix, A., 1973. On the role of superoxide in reactions catalyzed by rubredoxin of Pseudomonas oleovorans, Biochem. Biophys. Res. Commun. 54:1540–1545. Mayer, R., Widom, J., and Que, Jr., L., 1980, Involvement of superoxide in the reactions of the catechol dioxygenases, Biochem. Biophys. Res. Commun. 92: 285–291.

    Google Scholar 

  • McCandish, E., Miksztal, A. R., Nappa, M., Springer, A. Q., Valentine, J. S., Stong, J. D., and Spiro, T. G., 1980. Reactions of superoxide with iron porphyrins in aprotic solvents: A high spin ferric porphyrin peroxo complex, J. Am. Chem. Soc. 102: 4268–4271.

    Article  Google Scholar 

  • McCord, J. M., and Day, E. D., 1978. Superoxide dependent production of hydroxyl radical catalyzed by iron-EDTA complex, FEBS Lett. 86: 139–142.

    Article  PubMed  CAS  Google Scholar 

  • McCord, J. M., and Fridovich, 1., 1968. The reduction of cytochrome c by milk xanthine oxidase, J. Biol. Chem. 243: 5753–5760.

    PubMed  CAS  Google Scholar 

  • McElroy, A. D., and Hashman, J. S., 1964. Synthesis of tetramethylammonium superoxide, Inorg. Chem. 3: 1798–1799.

    CAS  Google Scholar 

  • McIsaac, J. E., Subbaraman, L. R., Subbaraman, J., Mulhausen, H. A., and Behrman, E. J., 1972. The nucleophilic reactivity of peroxy anions, J. Org. Chem. 37: 1037–1041.

    Article  CAS  Google Scholar 

  • Merritt, M. V., and Johnson, R. A., 1977. Spin trapping, alkylperoxy radicals, and superoxide-alkyl halide reactions, J. Am. Chem. Soc. 99: 3713–3719.

    Article  CAS  Google Scholar 

  • Merritt, H., and Sawyer, D. T., 1970. Electrochemical studies of the reactivity of superoxide ion with several alkyl halides in dimethyl sulfoxide, J. Org. Chem. 35: 2157–2159.

    Article  CAS  Google Scholar 

  • Milligan, D. E., and Jacox, M. E., 1963. Infrared spectroscopic evidence for the species HO2, J. Chem. Phys. 38: 2627–2631.

    Article  CAS  Google Scholar 

  • Misra, H., and Fridovich, I., 1972a. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismustase, J. Biol. Chem. 247: 3170–3175.

    PubMed  CAS  Google Scholar 

  • Misra, H., and Fridovich, I., 1972b. The generation of superoxide radical during the autoxidation of hemoglobin, J. Biol. Chem. 247: 6960–6962.

    PubMed  CAS  Google Scholar 

  • Moro-Oka, Y., and Foote, C. S., 1976. Chemistry of superoxide ion. I. Oxidation of 3,5-di-tertbutylcatechol with KO2, J. Am. Chem. Soc. 98: 1510–1514.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, R. and Kearns, D. R., 1974. Some useful heterogeneous systems for photosensitized generation of singlet oxygen, Photochem and Photobiol. 19: 181–184.

    Article  CAS  Google Scholar 

  • Ose, D. E., and Fridovich, I. 1979. A manganese-containing superoxide dismutase from Escherichia coli: A reversible resolution and metal replacements, Arch. Biochem. Biophys: 194: 360–364.

    Article  PubMed  CAS  Google Scholar 

  • Overend, R., and Paraskevopoulos, G., 1978. Rates of OH radical reaction. 4. Reactions with methanol, ethanol, 1-propanol, and 2-propanol at 296°K, J. Phys. Chem. 82: 1329–1333.

    Article  CAS  Google Scholar 

  • Ozawa, T., Hanaki, A., and Yamamoto, H. 1977. On a spectrally well-defined and stable source of superoxide ion, O2, FEBS Lett. 74: 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Paraskevopoulos, G., and Nip, W. S., 1980. Rates of OH radical reactions. VII. Reactions of OH and OD radicals with n-C4H,o, n-C4D,o, H2 and D2, and of OH with n-C5H,2 at 297°K, Can. J. Chem. 58: 2146–2149.

    CAS  Google Scholar 

  • Pedersen, C. J., 1967. Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc. 89: 7017–7036.

    Article  CAS  Google Scholar 

  • Peters, J. W., and Foote, C. S., 1976. Chemistry of superoxide ion. II. Reaction with hydroperoxides, J. Am. Chem. Soc. 98: 873–875.

    Article  CAS  Google Scholar 

  • Pick, M., Rabani, J., Yost, F., and Fridovich, I., 1974. The catalytic mechanism of the manganesecontaining superoxide dismutase of Escherichia coli studied by pulse radiolysis, J. Am. Chem. Soc. 96: 7329–7333.

    CAS  Google Scholar 

  • Poupko, R., and Rosenthal, I., 1973. Electron transfer interactions between superoxide ion and organic compounds, J. Chem. Phys. 77: 1722–1724.

    Article  CAS  Google Scholar 

  • Pryor, W. A., and Tang, R. H., 1978. Ethylene formation from methional, Biochem. Biophys. Res. Commun. 81: 498–503.

    CAS  Google Scholar 

  • Rabani, J., and Nielsen, S. 0., 1969. Absorption spectrum and decay kinetics of 02 and H02 in aqueous solutions by pulse radiolysis, J. Phys. Chem. 73: 3736–3744.

    CAS  Google Scholar 

  • Reichelt, J. L., Nealson, K., and Hastings, J. W., 1977. The specificity of symbiosis: Pony fish and luminescent bacteria, Arch. Microbiol. 112: 157–161.

    Article  Google Scholar 

  • Richardson, J. S., Thomas, K. A., Rubin, B. H., and Richards, D. C., 1975. Crystal structure of bovine Cu, Zn in superoxide dismutase at 3 A resolution: Chain tracing and metal ligands, Proc. Nad. Acad. Sci. U.S.A. 72: 1349–1353.

    Article  CAS  Google Scholar 

  • Roberts, J. L., Jr., and Sawyer, D. T., 1981. Facile degradation by superoxide ion of carbon tetrachloride, chloroform, methylene chloride and p,p-DDT in aprotic media, J. Am. Chem. Soc. 103: 712–714.

    CAS  Google Scholar 

  • Rotilio, G., Finazzi-Agro, A., Calabrese, L., Bossa, F., Guerrieri, P., and Mondovi, B., 1971. Studies of the metal sites of copper proteins, ligands of copper in hemocuprein, Biochemistry 10: 616–621.

    Article  PubMed  CAS  Google Scholar 

  • Rotilio, G., Bray, R. C., and Fielden, E. M., 1972a. A pulse radiolysis study of superoxide dismutase, Biochim. Biophys. Acta 286: 605–609.

    Google Scholar 

  • Rotilio, G., Calabrese, L., Bossa, F., Barra, D., Finazzi-Agro, A., and Mondovi, B., 1972b. Properties of the apo-protein and role of copper and zinc in protein conformation and enzyme activity of bovine superoxide dismutase, Biochemistry, 11: 2182–2187.

    Article  PubMed  CAS  Google Scholar 

  • Rotilio, G., Morpurgo, L., Gioviagnoli, C., Calabrese, L., and Mondovi, B., 1972c. Studies of the metal sites of copper proteins: Symmetry of copper in bovine superoxide dismutase and its functional significance, Biochemistry 11: 2187–2192.

    Article  PubMed  CAS  Google Scholar 

  • Rotilio, G., Morpurgo, L., Calabresse, L., and Mondovi, B., 1973. On the mechanism of superoxide dismutase reaction of the bovine enzyme with hydrogen peroxide and ferrocyanide, Biochim. Biophys. Acta 302: 229–235.

    PubMed  CAS  Google Scholar 

  • Sagae, H., Fujihira, M., Osa, T., and Lund, H., 1977. Oxidation of nitroalkylbenzene with electrogenerated superoxide ion, Chem. Soc. Jpn. Chem. Lett. 1977: 793–796.

    Article  Google Scholar 

  • Sagae, H., Fujihira, M., Lund, H., and Osa, T., 1980. Oxidation of nitrotoluenes with electrogenerated superoxide ion, Bull. Chem. Soc. Jpn. 53: 1537–1541.

    Article  CAS  Google Scholar 

  • Saito, I., Otsuki, T., and Matsuura, T., 1979. The reaction of superoxide ion with vitamin K1 and its related compounds, Tetrahedron Lett. 1979: 1693–1696.

    Article  Google Scholar 

  • San Filippo, J., and Chern, C.-I., 1976. Oxidative cleavage of a-keto, a-hydroxy, and a-halo ketones, esters, and carboxylic acids by superoxide, J. Org. Chem. 41: 1077–1078.

    Article  CAS  Google Scholar 

  • San Filippo, J., Romano, L. J., Chern, C.-I., and Valentine, J. S., 1976. Cleavage of esters by superoxide, J. Org. Chem. 41: 586–588.

    Article  CAS  Google Scholar 

  • Sanka, J., and Martinsons, V., 1968. Chemical properties of potassium peroxide, Chem. Abstr. 68: 45846A.

    Google Scholar 

  • Sawyer, D. T., and Gibian, M. J., 1979. The chemistry of superoxide ion, Tetrahedron 35: 1471–1481.

    Article  CAS  Google Scholar 

  • Sawyer, D. T., and Valentine, J. S., 1981. How super is superoxide?. Acc. Chem. Res. 14: 393–399.

    Article  CAS  Google Scholar 

  • Sawyer, D. T., Gibian, M. J., Morrison, M. M., and Seo, E. T., 1978. On the chemical reactivity of superoxide ion, J. Am. Chem. Soc. 100: 627–628.

    Article  CAS  Google Scholar 

  • Scully, F. E., Jr., and Davis, R. C., 1978. Superoxide in organic synthesis: A new mild method for the oxidation of amines to carbonyls via N-chloroamines, J. Org. Chem. 43: 1467–1468.

    Article  CAS  Google Scholar 

  • Seyb, E., and Kleinberg, J., 1951. Determination of superoxide oxygen, Anal. Chem. 23: 115–117.

    Article  CAS  Google Scholar 

  • Stanley, J. P., 1980. Reactions of superoxide with peroxides, J. Org. Chem. 45:1413–1418. Steinman, H. M., and Hill, R. L., 1973. Sequence homologies among bacterial and mitochondrial superoxide dismutases, Proc. Natl. Acad. Sci. U.S.A. 70: 3725–3729.

    Google Scholar 

  • Steinman, H. M., Vishweshwar, R. N., Abernethy, J. L., and Hill, R. L., 1974. Bovine erythrocyte superoxide dismutase: Complete amino acid sequence, J. Biol. Chem. 249: 7326–7338.

    PubMed  CAS  Google Scholar 

  • Tezuka, M., Ohkatsu, Y., and Osa, T., 1975. Reactivity of electrogenerated superoxide ion. I. Autoxidation of 9,10-dihydroanthracene, Bull. Chem. Soc. Jpn. 48: 1471–1474.

    Article  CAS  Google Scholar 

  • Thomas, K. A., Rubin, B. H., Bier, J. C., Richardson, J. S., and Richardson, D. C., 1974. The crystal structure of bovine Cu,, Zn2 + superoxide dismutase at 5.5 A resolution, J. Biol. Chem. 249: 5677–5683.

    PubMed  CAS  Google Scholar 

  • Thomas, M. J., Mehl, K. S., and Pryor, W. A., 1978. The role of superoxide anion in the xanthine oxidase-induced autoxidation of linoleic acid, Biochem. Biophys. Res. Commun. 83: 927–932.

    Article  PubMed  CAS  Google Scholar 

  • Valentine, J. S., and Curtis, A. B., 1975. A convenient preparation of solutions of superoxide anion and the reaction of superoxide anion with a copper(II) complex, J. Am. Chem. Soc. 97: 224–226.

    Article  PubMed  CAS  Google Scholar 

  • Vance, D. G., Keele, B. B., Jr., and Rajagopalan, K. V., 1972. Superoxide dismutase from Streptococcus mutans, J. Biol. Chem. 247: 4782–4786.

    PubMed  CAS  Google Scholar 

  • Varney, R. N., Pahl, M., and Mark, T. D., 1973. Properties of the ionic system N4+ -, 04+ -, and 04 -, Acta Phys. Austriaca 38: 287–294.

    CAS  Google Scholar 

  • Wallace, M. J., Maxwell, J. C., and Caughey, W. S., 1974. The mechanisms of hemoglobin autoxidation: Evidence for proton-assisted nucleophilic displacement of superoxide by anions, Biochem. Biophys. Res. Commun. 57: 1104–1110.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein, J., and Bielski, B. H. J., 1979. Kinetics of the interaction of HO2 and O2 radicals with hydrogen peroxide: The Haber-Weiss reaction, J. Am. Chem. Soc. 101: 58–62.

    Article  CAS  Google Scholar 

  • Weisiger, R. A., and Fridovich, I., 1973. Superoxide dismutase, J. Biol. Chem. 248:3582–3592. Weser, U., Bunnenberg, E., Cammack, R., Djerassi, C., Flohe, L., Thomas, G., and Voelter, W., 1971. A study on purified bovine erythrocuprein, Biochim, Biophys, Acta 243;203213.

    Google Scholar 

  • Wever, R., Oudega, B., and Van Gelder, B. F., 1973. Generation of superoxide radicals during the autoxidation of mammalian oxyhemoglobin, Biochim. Biophys. Acta 302: 475–478.

    CAS  Google Scholar 

  • Wilshire, J., and Sawyer, D. T., 1979. Redox chemistry of dioxygen species, Acc. Chem. Res. 12: 105–110.

    Article  CAS  Google Scholar 

  • Yost, F. J. and Fridovich,I., 1973. An iron containing superoxide dismutase from Escherichia coli, J. Biol. Chem. 248: 4905–4908.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Ingraham, L.L., Meyer, D.L. (1985). Superoxide Ion. In: Biochemistry of Dioxygen. Biochemistry of the Elements, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2475-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2475-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9501-3

  • Online ISBN: 978-1-4613-2475-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics