Skip to main content

Medical Applications of Elemental Analysis Using Fluorescence Techniques

  • Chapter
Progress in Medical Radiation Physics

Abstract

Elemental analysis using X-ray fluorescence had its beginnings in the early 1900s with the discovery of characteristic X-ray line spectra. One of the earliest uses of the technique was to determine the elemental composition of mineral samples. During the last 15 years, much progress has been made in X-ray detection and analysis systems, so that fluorescence analysis techniques are being used in many different fields. Modern applications include analyzing environmental pollutants near urban and industrial areas, analyzing commercial products for impurities, determining the constituents of geological and archaeological samples, as well as applications in the field of criminology. In recent years, fluorescence analysis has received much attention from the medical community because of its usefulness in determining concentrations of naturally occurring trace elements and changes in these concentrations due to pathological conditions, and in detecting elements deliberately introduced into the body as tracers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Valkovic, Analysis of Biological Material for Trace Elements Using X-Ray Spectroscopy, CRC, Boca Raton, Florida (1980).

    Google Scholar 

  2. E. J. Underwood, Trace Elements in Human and Animal Nutrition, Academic, New York (1971).

    Google Scholar 

  3. W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, ed., Trace Element Metabolism in Animals V. 2, University Park, Baltimore (1974).

    Google Scholar 

  4. I. L. Mulay, R. Roy, B. E. Knox, N. H. Suhr, and W. E. Delaney, Trace-metal analysis of cancerous and noncancerous human tissues, J. Nat. Cancer Inst. 47, 1–13 (1971).

    CAS  Google Scholar 

  5. M. H. Seltzer, F. E. Rosato, and M. J. Fletcher, Serum and tissue magnesium levels in human breast carcinoma, J. Surg. Res. 10, 159–162 (1970).

    Article  CAS  Google Scholar 

  6. A. Danielsen and E. Steinnes, A study of some selected trace elements in normal and cancerous tissue by neutron activation analysis, J. Nucl. Med. 11, 260–264 (1970).

    CAS  Google Scholar 

  7. J. M. Janes, J. T. McCall, and L. R. Elveback, Trace metals in human osteogenic sarcoma, Mayo Clin. Proc. 47, 476–478 (1972).

    CAS  Google Scholar 

  8. J. Sherman, The theoretical derivation of fluorescent X-ray intensities from mixtures, Spectrochim. Acta 1, 283–306 (1955).

    Google Scholar 

  9. J. Sherman, Simplification of a formula in the correlation of fluorescent X-ray intensities from mixtures, Spectrochim. Acta 15, 466–470 (1959).

    Article  Google Scholar 

  10. H. J. Lucas-Tooth and B. J. Price, A mathematical method for the investigation of interelement effects in X-ray fluorescent analysis, Metallurgica 64, 149–152 (1961).

    CAS  Google Scholar 

  11. H. J. Lucas-Tooth and C. Pyne, The accurate determination of major constituents by X-ray fluorescent analysis in the presence of large interelement effects, in Advances in X-Ray Analysis vol. 7 (W. M. Mueller, G. Mallet, and M. Fay, eds.), pp. 523–541, Plenum, New York (1964).

    Google Scholar 

  12. J. W. Criss and L. S. Birks, Calculation methods for fluorescent X-ray spectrometry, Anal. Chem. 40, 1080–1086 (1968).

    Article  CAS  Google Scholar 

  13. A. Stephenson, Theoretical analysis of quantitative X-ray emission data: glasses, rocks, and metals, Anal. Chem. 43, 1761–1764 (1971).

    Article  CAS  Google Scholar 

  14. C. J. Sparks, Jr., Quantitative X-ray fluorescent analysis using fundamental parameters, in Advances in X-Ray Analysis vol. 19 ( R. W. Gould, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds.), pp. 19–52, Kendall/Hunt, Dubuque, Iowa (1976).

    Google Scholar 

  15. R. P. Gardner and A. R. Hawthorne, Monte Carlo simulation of the X-ray fluorescence excited by discrete energy photons in homogeneous samples including tertiary interelement effects, X-Ray Spectrom. 4, 138–148 (1975).

    Article  CAS  Google Scholar 

  16. A. R. Hawthorne and R. P. Gardner, Monte Carlo simulation of X-ray fluorescence from homogeneous multielement samples excited by continuous and discrete energy photons from X-ray tubes, Anal. Chem. 47, 2220–2225 (1975).

    Article  CAS  Google Scholar 

  17. R. P. Gardner, L. Wielopolski, and J. M. Doster, Adaption of the fundamental parameters of Monte Carlo simulation to EDXRF analysis with secondary fluorescer X-ray machines, in Advances in X-Ray Analysis vol. 21 (C. S. Barrett, D. E. Leyden, J. B. Newkirk, and C. O. Ruud, eds.), pp. 129–142, Plenum, New York (1978).

    Google Scholar 

  18. R. Woldseth, X-Ray Energy Spectroscopy, Kevex Corp., Burlingame, California (1973).

    Google Scholar 

  19. D. C. Camp, Physical principles, in Medical Applications of Fluorescent Excitation Analysis ( L. Kaufman and D. C. Price, eds.), pp. 3–27, CRC Press, Boca Raton, Florida (1979).

    Google Scholar 

  20. J. M. Jaklevic and F. S. Goulding, Instrumentation for energy dispersive X-ray fluorescence, in Medical Applications of Fluorescent Excitation Analysis (L. Kaufman and D. C. Price, eds.), pp. 29–47, CRC, Boca Raton, Florida (1979).

    Google Scholar 

  21. Technical Data—Silicon (Li) X-Ray Detectors, E. G. and G. Ortec, Oak Ridge, Tennessee (December, 1977 ).

    Google Scholar 

  22. P. B. Hoffer, R. N. Beck, and A. Gottschalk, eds., The Role of Semiconductor Detectors in the Future of Nuclear Medicine, Society of Nuclear Medicine, New York (1971).

    Google Scholar 

  23. J. M. Jaklevic, Excitation methods for energy-dispersive analysis, in Medical Applications of Fluorescent Excitation Analysis (L. Kaufman and D. C. Price, eds.), pp. 49-67, CRC, Boca Raton, Florida (1979).

    Google Scholar 

  24. L. T. Dillman and F. C. von der Lage, Radionuclide Decay Schemes and Nuclear Parameters for Use in Radiation-Dose Estimation, NM/MIRD Pamphlet no. 10, Society of Nuclear Medicine, New York (1975).

    Google Scholar 

  25. Radiation Sources, New England Nuclear Catalog 7M678A-1270, Boston, p. 5 (June, 1978).

    Google Scholar 

  26. T. J. Kneip and G. R. Laurer, Isotope excited X-ray fluorescence, Anal. Chem. 44, 57A–68A (1972).

    Article  CAS  Google Scholar 

  27. E. Vano and L. González, Importance of geometry in biological sample analysis by X-ray fluorescence, Med. Phys. 5, 400–403 (1978).

    Article  CAS  Google Scholar 

  28. P. A. Feller, Determination of the suitability of photon-induced X-ray fluorescence analysis for the quantitation of selected low-atomic-number trace elements in biological materials, Ph.D. Dissertation, University of Cincinnati, Cincinnati, Ohio (1980).

    Google Scholar 

  29. D. A. Gedcke, E. Elad, and P. B. Denee, An intercomparison of trace element excitation methods for energy-dispersive fluorescence analyzers, X-Ray Spectrom. 6, 21–29 (1977).

    Article  CAS  Google Scholar 

  30. P. S. Ong, P. K. Lund, C. E. Litton, and B. A. Mitchell, An energy dispersive system for the analysis of trace elements in human blood serum, in Advances in X-Ray Analysis vol. 16 (L. S. Birks, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds.), pp. 124–133, Plenum, New York (1973).

    Google Scholar 

  31. P. S. Ong, Trace elements in medicine, in Medical Applications of Fluorescent Excitation Analysis (L. Kaufman and D. C. Price, eds.), pp. 71-88, CRC, Boca Raton, Florida (1979).

    Google Scholar 

  32. P. S. Ong and H. L. Cox, Jr., Line-focusing X-ray monochromator for the analysis of trace elements in biological specimens, Med. Phys. 3, 74–79 (1976).

    Article  CAS  Google Scholar 

  33. T. G. Dzubay, B. V. Jarrett, and J. M. Jaklevic, Background reduction in X-ray fluorescence spectra using polarization, Nucl. Instr. Meth. 115, 297–299 (1974).

    Article  CAS  Google Scholar 

  34. L. Kaufman and D. C. Camp, Polarized radiation for X-ray fluorescence analysis, in Advances in X-Ray Analysis vol. 18 (W. L. Pickles, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds.), pp. 247–258, Plenum, New York (1975).

    Google Scholar 

  35. R. H. Howell, W. L. Pickles, and J. L. Cate, X-ray fluorescence experiments with polarized X rays, in Advances in X-Ray Analysis vol. 18 (W. L. Pickles, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds.), pp. 265–277, Plenum, New York (1975).

    Google Scholar 

  36. L. Kaufman, D. Shosa, and D. C. Camp, A high intensity source of polarized X rays for fluorescent excitation analysis, IEEE Trans. Nucl. Sci. NS-24, 525–531 (1977).

    Article  Google Scholar 

  37. R. W. Ryon, Polarized radiation produced by scatter for energy dispersive X-ray fluorescence trace analysis, in Advances in X-Ray Analysis vol. 20 (H. F. McMurdie, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds.), pp. 575–590, Plenum, New York (1977).

    Google Scholar 

  38. P. Standzenieks and E. Selin, Background reduction of X-ray fluorescence spectra in a secondary target energy dispersive spectrometer, Nucl. Instr. Meth. 165, 63–65 (1979).

    Article  CAS  Google Scholar 

  39. J. F. Tinney, In vivo X-ray fluorescence analysis—concepts and equipment, in Semiconductor Detectors in the Future of Nuclear Medicine (P. B. Hofler, R. N. Beck, and A. Gottschalk, eds.), pp. 214–229, Society of Nuclear Medicine, New York (1971).

    Google Scholar 

  40. L. Patomaki and H. Olkkonen, Determination of mineral density and structural inhomogen-eity of trabecular bone in vitro by X-ray fluorescence line scanning, Int. J. Appl. Rad. I sot. 25, 401–406 (1974).

    Article  CAS  Google Scholar 

  41. R. Cesareo and D. Del Principe, Analysis of iron in blood using radioisotopic-excited X-ray fluorescence, Med. Phys. 1, 163–164 (1974).

    Article  CAS  Google Scholar 

  42. L. Ahlgren and S. Mattsson, An X-ray fluorescence technique for in vivo determination of lead concentration in a bone matrix, Phys. Med. Biol. 24, 136–145 (1979).

    Article  CAS  Google Scholar 

  43. L. Ahlgren and S. Mattsson, Cadmium in man measured in vivo by X-ray fluorescence analysis, Phys. Med. Biol. 26, 19–26 (1981).

    Article  CAS  Google Scholar 

  44. L. Kaufman and C. J. Wilson, Determination of extracellular fluid volume by fluorescence excitation analysis of bromine, J. Nucl. Med. 14, 812–815 (1973).

    CAS  Google Scholar 

  45. D. C. Price, L. Kaufman, and R. N. Pierson, Jr., Determination of the bromide space in man by fluorescent excitation analysis of oral bromine, J. Nucl. Med. 16, 814–818 (1975).

    CAS  Google Scholar 

  46. L. Kaufman, F. Deconinck, D. C. Price, P. Guesry, C. J. Wilson, B. Hruska, S. J. Swann, D. C. Camp, A. L. Voegele, R. D. Friesen, and J. A. Nelson, An automated fluorescent excitation analysis system for medical applications, Invest. Radiol. 11, 210–215 (1976).

    Article  CAS  Google Scholar 

  47. D. C. Price, S. J. Swann, S. T. C. Hung, L. Kaufman, J. P. Huberty, and S. B. Shohet, The measurement of circulating red cell volume using nonradioactive cesium and fluorescent excitation analysis, J. Lab. Clin. Med. 87, 535–543 (1976).

    CAS  Google Scholar 

  48. A. A. Moss, L. Kaufman, and J. A. Nelson, Fluorescent excitation analysis: a simplified method of iodine determination in vitro, Invest. Radiol. 7, 335–338 (1972).

    Article  CAS  Google Scholar 

  49. J. A. Nelson, Studies of the kinetics of X-ray contrast agents using fluorescent excitation analysis, in Medical Applications of Fluorescent Excitation Analysis (L. Kaufman and D. C. Price, eds.), pp. 129–135, Plenum, New York (1979).

    Google Scholar 

  50. L. Kaufman, D. Shames, and M. Powell, An absorption correction technique for in vivo iodine quantitation by fluorescent excitation, Invest. Radiol. 8, 167–169 (1973).

    Article  CAS  Google Scholar 

  51. N. Alazraki, J. W. Verba, J. E. Henry, R. Becker, A. Taylor, and S. E. Halpern, Noninvasive determination of glomerular filtration rate using X-ray fluorescence, Radiology 122, 183–186 (1977).

    CAS  Google Scholar 

  52. P. Guesry, L. Kaufman, S. Orloff, J. A. Nelson, S. Swann, and M. Holliday, Measurement of glomerular filtration rate by fluorescent excitation of nonradioactive meglumine iothalamate, Clin. Nephrol. 3, 134–138 (1975).

    CAS  Google Scholar 

  53. R. Cesareo, D. Del Principe, G. Mancuso, and D. B. Tallarida, In vitro labelling of platelets with stable selenocystine, Int. J. Appl. Radia. Isot. 27, 324–326 (1976).

    Article  CAS  Google Scholar 

  54. R. Cesareo, G. Tallarida, and F. Baldoni, Determination of hemodynamic parameters in the rabbit by X-ray fluorescence excitation, Int. J. Appl. Radia. Isot. 26, 285–289 (1975).

    Article  CAS  Google Scholar 

  55. P. B. Hoffer, R. E. Polcyn, R. Moody, H. J. Lowe, and A. Gottschalk, Fluorescence detection: application to the study of cerebral blood flow, J. Nucl. Med. 10, 651–653 (1969).

    CAS  Google Scholar 

  56. R. A. Moody, P. B. Hoffer, R. E. Polcyn, H. J. Lowe, A. Gottschalk, and G. D. Dobben, K-shell fluorescence for the study of regional cerebral blood flow, J. Neurosurg. 35, 181–184 (1971).

    Article  CAS  Google Scholar 

  57. M. F. Lubozynski, R. J. Baglan, G. R. Dyer, and A. B. Brill, Sensitivity of X-ray fluorescence for trace element determinations in biological tissues, Int. J. Appl. Rad. Isot. 23, 487–491 (1972).

    Article  CAS  Google Scholar 

  58. H. L. Cox and P. S. Ong, Sample mass determination using Compton-and total scattered excitation radiaton for energy-dispersive X-ray fluorescent analysis of trace elements in soft tissue specimens, Med. Phys. 4, 99–108 (1977).

    Article  CAS  Google Scholar 

  59. J. M. Jaklevic, W. R. French, T. W. Clarkson, and M. R. Greenwood, X-ray fluorescence analysis applied to small samples, in Advances in X-Ray Analysis vol. 21 (C. S. Barrett, D. E. Leyden, J. B. Newkirk, and C. O. Ruud, eds.), pp. 171–185, Plenum, New York (1978).

    Google Scholar 

  60. L. Kaufman, D. M. Shames, R. H. Greenspan, M. R. Powell, and V. Perez-Mendez, Cardiac output determination by fluorescence excitation in the dog, Invest. Radiol. 7, 365–368 (1972).

    Article  CAS  Google Scholar 

  61. M. E. Phelps, R. L. Grubb, Jr., and M. M. Ter-Pogossian, In vivo regional cerebral blood volume by X-ray fluorescence: Validation of method, J. Appl. Physiol. 35, 741–747 (1973).

    CAS  Google Scholar 

  62. F. Folkman, Progress in the description of ion induced X-ray production: Theory and implication for analysis, in Iron Beam Surface Layer Analysis vol. 2 ( O. Meyer, G. Linker, and F. Kappeler, eds.), Plenum, New York (1976).

    Google Scholar 

  63. L. R. Anspaugh, W. L. Robinson, W. H. Martin, and O. A. Lowe, Compilation of Published Information on Elemental Concentrations in Human Organs in Both Normal and Diseased States, UCLR-51013, Lawrence Radiation Laboratory Report, Berkeley, California (1976).

    Google Scholar 

  64. M. Dabek, N. A. Dyson, and A. E. Simpson, Quantitative applications of proton-induced X-ray emission analysis in the fields of medicine and biology, Proceedings of the Annual Conference of the Microbeam Analysis Society, Microbeam Analysis Society, Bethlehem, Pennsylvania (1977).

    Google Scholar 

  65. H. Kubo, Reproducibility of proton-induced elemental analysis in biological tissue sections, Nucl Instr. Meth. 121, 541–545 (1974).

    Article  CAS  Google Scholar 

  66. H. Kubo, S. Hashimoto, A. Ishibashi, R. Chiba, and H. Yokota, Simultaneous determinations of Fe, Cu, Zn, and Br concentrations in human tissue sections, Med. Phys. 3, 204–209 (1976).

    CAS  Google Scholar 

  67. R. L. Walter, R. D. Willis, W. F. Gutknecht, and J. M. Joyce, Analysis of biological, clinical, and environmental samples using proton-induced X-ray emission, Anal. Chem. 46, 843–855 (1974).

    Article  CAS  Google Scholar 

  68. H. A. Van Rinsvelt, R. D. Lear, and W. R. Adams, Human diseases and trace elements: investigation by proton-induced X-ray emission, Nucl. Instr. Meth. 142, 171 (1977).

    Article  Google Scholar 

  69. M. Berti, G. Buso, P. Colautti, G. Moschini, B. M. Stievano, and C. Tregnaghi, Determination of selenium in blood serum by proton-induced X-ray emission, Anal. Chem. 49, 1313–1315 (1977).

    Article  CAS  Google Scholar 

  70. R. C. Bearse, D. A. Close, J. J. Malanify, and C. J. Umbarger, Elemental analysis of whole body using proton-induced X-ray emission, Anal. Chem. 46, 499–503 (1974).

    Article  CAS  Google Scholar 

  71. H. Daniel, The muon as a tool for scanning the interior of the human body, Nuclearmedizin 8, 311–319 (1969).

    CAS  Google Scholar 

  72. L. Rosen, Relevance of particle accelerators to national goals, Science 173, 490–497 (1971).

    Article  CAS  Google Scholar 

  73. R. L. Hutson, J. J. Reidy, K. Sprunger, H. Daniel, and H. B. Knowles, Tissue chemical analysis with muonic X-rays, Radiology 120, 193–198 (1976).

    CAS  Google Scholar 

  74. J. C. Russ, Electron probe X-ray microanalysis—principles, in Electron Probe Microanalysis in Biology (D. A. Erasmus, ed.), pp. 5–36, Chapman and Hall, London (1978).

    Google Scholar 

  75. J. A. Chandler, The application of X-ray microanalysis in TEM to the study of ultrathin biological specimens—a review, in Electron Probe Microanalysis in Biology (D. A. Erasmus, ed.), pp. 37–93, Chapman and Hall, London (1978).

    Google Scholar 

  76. A. Ahmed, Calcification of human breast carcinomas: ultrastructural observations, J. Path. 117, 247–251 (1975).

    Article  CAS  Google Scholar 

  77. M. Ashraf and C. M. Bloor, X-ray microanalysis of mitochondrial deposits in ischaemic myocardium, Virchows Archiv. Cell Path. 22, 287–298 (1976).

    CAS  Google Scholar 

  78. M. Ashraf, H. D. Sybers, and C. M. Bloor, X-ray microanalysis of ischaemic myocardium, Exp. and Molec. Path. 24, 435–440 (1976).

    Article  CAS  Google Scholar 

  79. R. Yarom, P. D. Peters, M. Scripps, and S. Rogel, Effects of specimen preparation on intracellular myocardial calcium, Histochem. 38, 143–153 (1974).

    Article  CAS  Google Scholar 

  80. T. W. Davies and A. J. Morgan, The application of X-ray analysis in the transmission electron analytical microscope (TEAM) to the quantitative bulk analysis of biological microsamples, J. Microscopy 107, 47–54 (1976).

    Article  CAS  Google Scholar 

  81. J. A. Chandler, X-ray microanalysis of human chromosomes, Lancet 7859, 687 (1974).

    Article  Google Scholar 

  82. E. W. Dempsey, F. J. Agate, M. Lee, and M. L. Purkerson, Analysis of submicroscopic structures by their emitted X rays, J. Histochem. Cytochem. 21, 580–586 (1973).

    Article  CAS  Google Scholar 

  83. J. R. Baker and T. C. Appleton, A technique for electron microscope autoradiography and X-ray microanalysis of diffusible substances using freeze-dried fresh-frozen sections, J. Microscopy 108, 307–315 (1976).

    Article  CAS  Google Scholar 

  84. F. N. Ghadially, A. F. Oryschak, R. L. Ailsby, and P. N. Mehta, Electron probe X-ray microanalysis of siderosomes in haemarthrotic articular cartilage, Virchows Archiv. Cell Path. 16, 43–49 (1974).

    Article  CAS  Google Scholar 

  85. M. J. Murphy and J. C. Piscopo, Cellular iron in aplastic anaemic human bone marrow: a study by energy-dispersive analysis of X rays, J. Submicroscopic Cytol, 8, 269–276 (1976).

    Google Scholar 

  86. K. Griffiths. W. J. Henderson, J. A. Chandler, and C. A. F. Joslin, Ovarian cancer: some new analytical approaches, Postgrad. Med. J. 49, 69–72 (1973).

    Article  CAS  Google Scholar 

  87. A. González-Angulo and R. Azner-Ramos, Ultrastructural studies on the endometrium of women wearing T-Cu 200 IUDs by means of transmission and scanning EM and X-ray dispersive analysis, Amer. J. Obs. Gyn. 125, 170–178 (1976).

    Google Scholar 

  88. J. A. Grimaud, J. C. Czyba, and N. Guillot, Energy-dispersive X-ray spectrometry of human spermatozoa in electron microscopy, Comptes Rendus des Seances de la Societe de Biologie 170, 1233–1236 (1977).

    Google Scholar 

  89. W. J. Henderson, D. M. D. Evans, J. D. Davies, and K. Griffiths, Analysis of particles in stomach tumours from Japanese males, Environ. Res. 9, 240–249 (1975).

    Article  CAS  Google Scholar 

  90. L. Herman, T. Sato, and C. N. Hales, The electron microscopic localization of cations to pancreatic islets of Langerhans and their possible role in insulin secretion, J. Ultrastructure Res. 42, 298–311 (1973).

    Article  CAS  Google Scholar 

  91. S. Hodson and J. Marshall, Tissue sodium and potassium: direct detection in the electron microscope, Experientia 26, 1283–1284 (1970).

    Article  CAS  Google Scholar 

  92. J. B. Kirkham, L. J. Goodman, and R. L. Chappel, Identification of cobalt in processes of stained neurons using energy spectra in the electron microscope, Brain Res. 85, 33–37 (1975).

    Article  CAS  Google Scholar 

  93. R. J. Skaer and P. D. Peters, The state of chlorine and potassium in human platelets and red cells, Nature 257, 719–720 (1975).

    Article  CAS  Google Scholar 

  94. K. Takaya, Intranuclear silicon detection in a subcutaneous connective tissue cell by energy-dispersive X-ray microanalysis using fresh air-dried spread, J. Histochem. Cytochem. 23, 681–685 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Feller, P.A., Kereiakes, J.G., Thomas, S.R. (1985). Medical Applications of Elemental Analysis Using Fluorescence Techniques. In: Orton, C.G. (eds) Progress in Medical Radiation Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2387-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2387-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9458-0

  • Online ISBN: 978-1-4613-2387-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics