Skip to main content

Abstract

Compounds of bismuth were first proposed as useful oxidants for organic synthesis by Rigby1–3 in 1949. Both the pentavalent and the trivalent states of bismuth were found to display oxidizing power. Bismuth(V) in the form of sodium bismuthate is an oxidant analogous to lead tetraacetate, being fairly specific for the fission of 1,2-diols. During the study of sodium bismuthate it was discovered that bismuth(III) salts can oxidize α-hydroxyketones to the corresponding diketone.3 Following the discovery, bismuth trioxide was developed as a highly specific reagent for this purpose. The reduction of bismuth trioxide in this reaction leads to the formation of metallic bismuth. Neither sodium bismuthate nor bismuth trioxide has been used extensively in the years that followed their introduction. Both the reagents are heterogeneous oxidants and are normally employed in a medium of acetic acid. The rather harsh reaction conditions and uncertainty about the composition of commercial sodium bismuthate are probable reasons for the relative neglect of the reagents. The yields are generally good and separation of the products from the used reagent is easy in most cases. Sodium bismuthate was adopted for the direct oxidation and analysis of corticosteroids present in urine, tolerance of the reagent to water being essential in this application (in contrast to lead tetraacetate).4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Rigby, Nature 164, 185–186 (1949).

    Article  CAS  Google Scholar 

  2. W. Rigby. J. Chem. Soc. 1950, 1907–1913.

    Google Scholar 

  3. W. Rigby. J. Chem. Soc. 1951, 793–795.

    Google Scholar 

  4. C J. W. Brooks and J. K. Norymberski, Biochent. J. (London) 55, 371–378 (1953).

    CAS  Google Scholar 

  5. D. H. R. Barton, J. P. Kitchin, and W. B. Motherwell, J. Chem. Soc. Chem. Commun. 1978. 1099–1100.

    Google Scholar 

  6. D. H. R. Barton, D. J. Lester, W. B. Motherwell, and M. T. B. Papoula, J. Chem. Soc. Chem. Commun. 1979, 705–707.

    Google Scholar 

  7. C. Duval, Mikrochim. Acta 1956, 1432.

    Google Scholar 

  8. E. Diczfalusy, L. O. Plantin, G. Birke, S. C. Ingall, and J. K. Norymberski. Acta Endocrinol. 27, 275–280(1958).

    CAS  Google Scholar 

  9. E. Kon and E. McNelis, J. Org. Chem. 40, 1515–1517 (1975).

    Article  CAS  Google Scholar 

  10. E. Kon and E. McNelis, J. Org. Chem. 41, 1646–1648 (1976).

    Article  CAS  Google Scholar 

  11. F. R. Hewgill, B. R. Kennedy, and D. Kilpin, J. Chem. Soc. 1965, 2904–2914.

    Google Scholar 

  12. C. J. R. Adderley and F. R. Hewgill, J. Chem. Soc. (C) 1968. 2770–277’4.

    Google Scholar 

  13. F. Tsuchiya. S. Suzuki, and T. Ikawa, Kogyo Kagaku Zasshi 74, 1807–1810 (1971); Chem. Ahstr. 76, 3163k (1972).

    CAS  Google Scholar 

  14. L. K. Truesdale and M. E. Reuman, J. Org. Chem. 45, 726–727 (1980).

    Article  CAS  Google Scholar 

  15. J. K. Norymberski, Nature 170. 1074–1075 (1952).

    Article  CAS  Google Scholar 

  16. J. K. Norymberski, R. D. Stubbs, and H. F. West, Lancet 26. 1276–1281 (1953).

    Article  Google Scholar 

  17. D. C Smith and S. L. Tompsett, Analyst 80, 397–399 (1955).

    Article  CAS  Google Scholar 

  18. G. Copinschi. A. Cornil, and J. R. M. Franckson, Clin. Chim. Acta. 7. 817–822 (1962).

    Article  CAS  Google Scholar 

  19. A. S. Hay, H. S. Blanchard, G. F. Endres, and J. W. Eustance. J. Am. Chem. Soc. 81, 6335 (1959).

    Article  CAS  Google Scholar 

  20. E. Kon and E. McNelis, J. Chem. Soc. Chem. Commun. 1973, 562–563.

    Google Scholar 

  21. E. Adler, K. Holmberg, and L. O. Ryrfors, Acta Chem. Scand. Ser. B 28, 883–887 (1974).

    Article  Google Scholar 

  22. E. Adler, K. Holmberg, and L. O. Ryrfors, Acta Chem. Scand. Ser. B 28, 888–894 (1974).

    Article  Google Scholar 

  23. D. G. Hewitt. J. Chem. Soc. (C) 1971, 1750–1757.

    Google Scholar 

  24. C. Djerassi, H. J. Ringold and G. Rosenkranz. J. Am. Chem. Soc. 76, 5533–5536 (1954).

    Article  CAS  Google Scholar 

  25. S. M. Kupchan and D. Lavie, J. Am. Chem. Soc. 77 683–686 (1955).

    Article  CAS  Google Scholar 

  26. R. H. Reitsema. J. Am. Chem. Soc. 79, 4465–4468 (1957).

    Article  CAS  Google Scholar 

  27. J. S. Baran. J. Am. Chem. Soc. 80, 1687–1691 (1958).

    Article  CAS  Google Scholar 

  28. D. Lavie. Y. Shvo, D. Willner, P. R. Enslin, J. M. Hugo, and K. B. Norton, Chem. Ind. (London) 1959. 951–952.

    Google Scholar 

  29. A. L. Reese. K. McMartin, D. Miller, and P. P. Wickham. J. Org. Chem. 38. 764–768 (1973).

    Article  CAS  Google Scholar 

  30. D. H. R. Barton. J. P. Kitchin, D. J. Lester, W. B. Motherwell, and M. T. B. Papoula. Tetrahedron 37 (Suppl. 1), 73–79 (1981).

    Article  Google Scholar 

  31. D. H. R. Barton. D. J. Lester. W. B. Motherwell, and M. T. B. Papoula, J. Chem. Soc. Chcm. Commun. 1980. 24–247.

    Google Scholar 

  32. D. H. R. Barton, J. C. Blazejewski, B. Charpiot, D. J. Lester. W. B. Motherwell, and M. T. B. Papoula, J. Chem. Soc. Chem. Commun. 1980. 827–829.

    Google Scholar 

  33. P. Mueller and J. Blanc, Helv. Chim. Ada 62, 1980–1984 (1979).

    Article  CAS  Google Scholar 

  34. H. Gilman and A. H. Blatt, Organic Syntheses, Collective Volume 1, Wiley, New York, 1958.

    Google Scholar 

  35. H. Gilman and H. L. Yale. Chem. Rev. 30, 281–320 (1942).

    Article  CAS  Google Scholar 

  36. R. G. Goel and H. S. Prasad, J. OrganomeiaUic Chem. 36, 323–332 (1972).

    Article  CAS  Google Scholar 

  37. A. Ahond, B. F. Bowden, J. C. Coll, J. D. Fourneron, and S. J. Mitchell, Aust. J. Chem. 32, 1273–1280(1979).

    Article  CAS  Google Scholar 

  38. D. H. R. Barton, S. D. Gero, and C. D. Maycock, J. Chem. Soc. Chem. Commun. 1980, 1089–1091.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kitchin, J.P. (1986). Bismuth-Salt Oxidations. In: Mijs, W.J., de Jonge, C.R.H.I. (eds) Organic Syntheses by Oxidation with Metal Compounds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2109-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2109-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9248-7

  • Online ISBN: 978-1-4613-2109-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics