Skip to main content

The ovary and ovulation: A three-dimensional ultrastructural study

  • Chapter
Ultrastructure of Human Gametogenesis and Early Embryogenesis

Part of the book series: Electron Microscopy in Biology and Medicine ((EMBM,volume 5))

Abstract

The ovary is a highly complex organ that performs a dual role: it functions as an organ of reproduction and also as a gland of internal secretion. Gametogenesis has also been termed folliculogenesis (1). The ovary’s secretory activity, including the release into the circulation of nonsteroidal hormones that act locally within the ovary, was given the name hormonogenesis by Hodgen et al. (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hodgen GD, Kenigsburg D, Collins RL, Schenken RS: Selection of the dominant ovarian follicle and hormonal enhancement of the natural cycle. In: In Vitro Fertilization and Embryo Transfer. M Seppala, RG Edwards (eds), Ann NY Acad Sci 442: 23–37, 1985.

    Google Scholar 

  2. Mossman HW, Duke KL: Comparative morphology of the mammalian ovary. Madison, WI: University of Wisconsin Press, 1973.

    Google Scholar 

  3. Block E: Quantitative morphological investigations of the follicular system in women. Acta Anat 14: 108–123, 1952.

    PubMed  CAS  Google Scholar 

  4. Breitenecker G, Friedrich F, Kemeter P: Further investigations on the maturation and degeneration of human ovarian follicles and their oocytes. Fertil Steril 29: 336–541, 1978.

    PubMed  CAS  Google Scholar 

  5. Greenwald GS: Role of follicle-stimulating hormone and luteinizing hormone in follicular development and ovulation. In: Handbook of Physiology, Vol IV, American Physiological Society. RO Greep, EB Aswood, E Knobil, WH Sawyer, SR Geiger (eds), Washington: Baltimore Waverly Press, p 293–323, 1974.

    Google Scholar 

  6. Schwartz NB: The role of FSH and LH and of their antibodies on follicle growth and on ovulation. Biol Reprod 10: 236–272, 1974.

    PubMed  CAS  Google Scholar 

  7. Richards JS: Maturation of ovarian follicles: actions and interactions of pituitary and ovarian hormones on follicular cell differentiation. Physiol Rev 60: 51–89, 1980.

    PubMed  CAS  Google Scholar 

  8. Goodmann AL, Hodgen GD: The ovarian triad of the primate menstrual cycle. Rec Prog Horm Res 39: 1–73, 1983.

    Google Scholar 

  9. Hodgen GD: Physiology of follicular maturation. In: In Vitro Fertilization. HW Jones Jr, G Seegar Jones, GD Hodgen, Z Rosenwaks (eds), Norfolk: Pb Williams & Wilkins, p 8–29, 1986.

    Google Scholar 

  10. Seegar Jones GE, Acosta AA, Garcia JE, Rosenwaks Z: Specific effects of FSH and LH on follicular development and oocyte retrieval as determined by a program for in vitro fertilization. In: In Vitro Fertilization and Embryo Transfer. M Seppala, RG Edwards (eds), Ann NY Acad Sci 442: 119–122, 1985.

    Google Scholar 

  11. Baird DT, Messinis IE, Templeton AA, McNeilly AJ, Tsonis CG: Inhibin levels in gonadotropin-treated cycles. Fifth World Congress on In Vitro Fertilization and Embryo Transfer, Norfolk, Virginia ps-018, 1987.

    Google Scholar 

  12. Itskovitz J: Ovarian prorenin-renin-angiotensin system. Fifth World Congress on In Vitro Fertilization and Embryo Transfer, Norfolk, Virginia, ps-202, 1987.

    Google Scholar 

  13. Ying SY, Ling N, Guillemin R: Inhibins and activins. Fifth World Congress on In Vitro Fertilization and Embryo Transfer, Norfolk, Virginia ps-017, 1987.

    Google Scholar 

  14. Schwartz NB: The role of FSH and LH and of their antibodies on follicle growth and on ovulation. Biol Reprod 10: 236–241, 1974.

    PubMed  CAS  Google Scholar 

  15. Lunenfeld B, Kraiem Z, Eshkol A: Structure and function of the growing follicle. Clin Obstet Gynecol 3: 27–234, 1976.

    CAS  Google Scholar 

  16. Baird DT: Factors regulating the growth of the preovulatory follicle in the sheep and human. J Reprod & Fertil, 69: 343–352, 1983.

    CAS  Google Scholar 

  17. Van Blerkom J, Motta PM: The Cellular Basis of Mammalian Reproduction. Baltimore: Urban & Schwarzenberg, 1979.

    Google Scholar 

  18. Acosta AA, Seegar Jones G, Garcia JE, Sandow B, Week L, Mantzavinos T: Correlation of human menopausal gonadotropin/human chorionic gonadotropin stimulation and oocyte quality in an in vitro fertilization program. Fertil Steril 41: 196–201, 1984.

    PubMed  CAS  Google Scholar 

  19. Weeck LL, Wrotham JWE Jr, Witmyer J, Sandow BA, Acosta AA, Garcia JE, Jones JS, Jones HW Jr: Maturation and fertilization of morphologically immature human oocytes in a program of in vitro fertilization. Fertil Steril 39: 594–602, 1983.

    Google Scholar 

  20. Garcia JE, Jones GS, Acosta AA, Wright A: Human menopausal gonadotropin/human chorionic gonadotropin follicular maturation for oocyte aspiration: phase II, Fertil Steril 39: 157–163, 1983.

    Google Scholar 

  21. Marrs RP, Vargyas JM, Hoffman D, Yee B: Use of various ovarian stimulation methods to improve oocyte and embryo production for human in vitro fertilization. In: In Vitro Fertilization and Embryo Transfer. M. Seppala, RG Edwards (eds), Ann NY Acad Sci 442: 112–118, 1985.

    Google Scholar 

  22. Testart J, Lefevre B, Castanier M, Belaisch-Allart J, Guillet-Rosso F, Frydman R: Comparative effect of Clomipheme and Clomiphene/hMG on the preovulatory follicles and fertilizability of the oocyte. In: In Vitro Fertilization and Embryo Transfer. M Seppala, RG Edwards (eds), Ann N Y Acad Sci 442: 128–139, 1985.

    Google Scholar 

  23. Bayly CM, McBain JC, Clarke GA, Gronow MJ, Johnston WIH, Martin MJ, Speirs AL: Ovarian stimulation regimens in an in vitro fertilization program: a comparative analysis. In: In Vitro Fertilization and Embryo Transfer. M Seppala, RG Edwards (eds), Ann NY Acad sci 442: 123–127, 1985.

    Google Scholar 

  24. Russel JB, Polan ML, De Cherney AH: The use of pure follicle-stimulating hormone for ovulation induction in normal ovulatory women in an in vitro fertilization program. Fertil Steril 45: 829–833, 1986.

    Google Scholar 

  25. Yoshimura Y, Hosoi Y, Atlas SJ, Wallach EE: Effect of clomiphene citrate on in vitro ovulated ova. Fertil Steril 45: 800–804, 1986.

    PubMed  CAS  Google Scholar 

  26. Templeton AA, VanLook P, Angell RE, Aitken RJ, Lumsden MA, Baird DT: Oocyte recovery and fertilization rates in women at various times after the administration of hCG. J Reprod Fertil 76: 771–778, 1986.

    PubMed  CAS  Google Scholar 

  27. Balboni GC: Histology of the ovary. In: The Endocrine Function of the Human Ovary. VHT James, M Serio, G Giusti (eds), London: Academic Press, p 1–24, 1976.

    Google Scholar 

  28. Baca N, Zamboni L: The fine structure of human follicular oocytes. J Ultrastruct Res 19: 354–381, 1967.

    PubMed  CAS  Google Scholar 

  29. Tesarik J, Dvorak M: Morphometric study of the occurrence of cytoplasmic structures in human and rat primordial oocytes. In: XXL Colloq Sci Fac Med Univ Carol et XIX Congr Morph Symp E Klika (ed), Prague: p 533, 1978.

    Google Scholar 

  30. Caggiati A, Familiari G, Marrapese M, Ermini M, Carenza L, Motta PM: Aspetti ultrastrutturali dell’ovaio in pazienti trattati con chemioterapia per linfomi Hodgkin e non-Hodgkin. Fisiopat Rip 3: 33–37, 1985.

    Google Scholar 

  31. Motta PM, Takeva S, Nesci E: Etude ulstrastructurale et histochimique des rapports entre les cellules folliculaires et l’ovocyte pendant le developpement du follicule ovarien chez les mammiferes. Acta Anat 80: 537–562, 1971.

    PubMed  CAS  Google Scholar 

  32. Anderson E, Albertini DF: Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J Cell Biol 71: 680–686, 1976.

    PubMed  CAS  Google Scholar 

  33. Gilula NB, Epstein ML, Beers WH: Cell-to-cell communication and ovulation. A study of the cumulusoocyte complex. J Cell Biol 78: 58–75, 1978.

    PubMed  CAS  Google Scholar 

  34. Burghardt RC, Anderson E: Hormonal modulation of gap junctions in rat ovarian follicles. Cell Tissue Res 214: 181–193, 1981.

    PubMed  CAS  Google Scholar 

  35. Bachvarova R, Baran M, Tejblum A: Development of naked growing mouse oocytes in vitro. J Exp Zool 211: 159–169, 1980.

    CAS  Google Scholar 

  36. Brower PT, Schultz RM: Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev Biol 90: 144–153, 1982.

    PubMed  CAS  Google Scholar 

  37. Kang Y: Development of the zona pellucida in the rat oocyte. Am J Anat 139: 535–566, 1974.

    PubMed  CAS  Google Scholar 

  38. Hedrick JL, Fry GN: Immunocytochemical studies on the porcine zona pellucida. J Cell Biol 87: 143a, 1980.

    Google Scholar 

  39. Haddad A, Nagai MET: Radioautographic study of glycoprotein biosynthesis and renewal on the ovarian follicles of mice and the origin of the zona pellucida. Cell Tissue Res 177: 347–369, 1977.

    PubMed  CAS  Google Scholar 

  40. Bleil JD, Wassarman PM: Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte’s zona pellucida. Dev Biol 76: 185–202, 1980.

    PubMed  CAS  Google Scholar 

  41. Bousquet D, Léveillé MC, Roberts KD, Chapdelaine A, Bleau G: The cellular origin of the zona pellucida antigen in the human and hamster. J Exp Zool 215: 215–218, 1981.

    PubMed  CAS  Google Scholar 

  42. Stegner HE, Wertemberg H: Elektronenmikroskopische und histopochemische Untersuchungen uber Struktur und bildung der zona pellucida menschlicher Eizellen. Z Zellforsh 53: 702–713, 1964.

    Google Scholar 

  43. Kang YH, Anderson WA, Chang SL, Ryan RJ: Studies on the structure of the extracellular matrices of the mammalian follicles as revealed by High Voltage Electron Microscopy and cytochemistry. In: Ovarian Follicular Development and Function. AR Midgley, WA Sadler (eds), New York: Raven Press, p 121–136, 1979.

    Google Scholar 

  44. Familiari G, Simongini E, Motta PM: The extracellular matrix of healthy and atretic mouse ovarian follicles studied by lanthanum nitrate and polycation ruthenium red. Acta Histochem 68: 193–207, 1981.

    PubMed  CAS  Google Scholar 

  45. Familiari G, Magliocca FM, Macchiarelli G, Motta PM: I proteoglicani della zona pellucida in follicoli in sviluppo ed atresici. Studio Ultrastrutturale. Fisiopat Riprod 3: 149–152, 1985.

    Google Scholar 

  46. Greve JM, Wassarman PM: Mouse egg extracellular coat is a matrix of interconnected filaments possessing a structural repeat. J Mol Biol 181: 253–264, 1985.

    PubMed  CAS  Google Scholar 

  47. Familiari G, Correr S, Motta PM: Gap junctions in theca interna cells of developing and atretic follicles. In: Advances in Morphology of Cells and Tissues. E Vidrio, A Galina (eds), New York: Alan Liss, p 337–348, 1981.

    Google Scholar 

  48. Familiari G, Castellucci M, Motta PM: Structural features of follicular basement membrane in the mouse ovary. Acta Anat 120: 23, 1984.

    Google Scholar 

  49. Gonzales-Santander R, Clavero Nuez JA: The fine structure of the human oocyte. Acta Anat 84: 106–117, 1973.

    Google Scholar 

  50. Baker TG: Oogenesis and ovarian development. In: Reproductive Biology. H Balin, S Glasser (eds), Amsterdam: Excerpta Medica, p 398–437, 1972.

    Google Scholar 

  51. Sundstrom P, Nilsson BO, Liedholm P, Larsson E: Ultrastructural characteristics of human oocytes fixed at follicular puncture or after culture. J In Vitro Fert Emb Transf 2: 195–206, 1985.

    CAS  Google Scholar 

  52. Zamboni L: Fine morphology of the follicle wall and follicle cell-oocyte association. Biol Reprod 10: 125–149, 1974.

    PubMed  CAS  Google Scholar 

  53. Sathananthan AH, U G, S g, Chia CM, Law HY, Edirisinghe WR, Ratman SS: The origin and distribution of cortical granules in human oocytes with reference to Golgi, nucleolar, and microfilament activity. In: In Vitro Fertilization and Embryo Transfer. M Seppala, RG Edwards (eds) Ann N Y Acad Sci 442: 251–264, 1985.

    Google Scholar 

  54. Suzuki S, Kitai H, Tojo R, Seki K, Oba M, Fujiwara T, Iizura R: Ultrastructural and some biologic properties of human oocytes and granulosa cells cultured in vitro. Fertil Steril 35: 142–148, 1981.

    PubMed  CAS  Google Scholar 

  55. Szollosi W, Gerrard M: Cytoplasmic changes in the mammalian oocytes during the preovulatory period. In: Fertilization of the Human Egg in Vitro. HM Beier, HR Lindner (eds), Berlin: Springer Verlag, p 35–55, 1983.

    Google Scholar 

  56. Sathananthan AH: Maturation of the human oocyte in vitro: nuclear events during meiosis (an ultrastructural study). Gamete Res 12: 237–254, 1985.

    Google Scholar 

  57. Fawcett DW: The Cell. Philadelphia: WB Saunders, 1981.

    Google Scholar 

  58. Tesarik J, Dvorak M: Human cumulus oophorus preovulatory development. J Ultrastruct Res 78: 60–72, 1982.

    PubMed  CAS  Google Scholar 

  59. Cho WK, Stern S, Biggers JD: Inhibitory effect of dibutyryl cAMP on mouse oocyte maturation in vitro. J Exp Zool 187: 383–386, 1974.

    PubMed  CAS  Google Scholar 

  60. Schultz RM, Wassarman PM: Specific changes in the pattern of protein sythesis during meitoic maturation of mammalian oocytes in vitro. Proc Natl Acad Sci USA 74: 538–541, 1977.

    PubMed  CAS  Google Scholar 

  61. Albertini DF, Anderson E: The appearance and structure of intercellular connections during the ontogeny of the rabbit ovarian follicle with particular reference to gap junctions. J Cell Biol 63: 234–250, 1974.

    PubMed  CAS  Google Scholar 

  62. Wassarman PM, Schultz RM, Letorneau GE: Protein synthesis during meiotic maturation of mouse oocytes in vitro. Synthesis and phosphorylation of a protein localized in the germinal vesicle. Dev Biol 69: 94–107, 1979.

    PubMed  CAS  Google Scholar 

  63. Dekel N, Beers WH: Development of the rat oocyte in vitro: inhibition and induction of maturation in the presence or absence of the cumulus oophorus. Dev Biol 75: 247–254, 1980.

    PubMed  CAS  Google Scholar 

  64. Schultz RM, Montgomery RR, Ward-Bailey PF, Eppig JJ: Regulation of oocyte maturation in the mouse: possible roles of intercellular communication, cAMP and testosterone. Dev Biol 95: 294–304, 1983.

    PubMed  CAS  Google Scholar 

  65. Dekel N: Regulation of oocyte maturation: A paracrine role for cyclic AMP. Fifth World Congress on In Vitro Fertilization and Embryo Transfer. Norfolk, Virginia, ps-023, 1987.

    Google Scholar 

  66. Bornslaeger EA, Shultz RM: Regulation of mouse oocyte maturation: effect of elevating cumulus cell cAMP on oocyte cAMP levels. Biol Reprod 33: 698–704, 1985.

    PubMed  CAS  Google Scholar 

  67. De Felici M: Binding of flourescent lectins to the surface of germ cells from fetal early postnatal gonads. Gamete Res 10: 423–432, 1984.

    Google Scholar 

  68. Centola GM, Anderson LD, Channing CP: Oocyte maturation inhibitor (OMI) activity in porcine granulosa cells. Gamete Res 4: 451–461, 1981.

    CAS  Google Scholar 

  69. Iwamatsu T, Yanagimachi R: Maturation in vitro of ovarian oocytes of prepubertal and adult hamsters. J Reprod Fertil 45: 83–90, 1975.

    PubMed  CAS  Google Scholar 

  70. Sorensen RA, Wassarman PM: Relationship between growth and meiotic maturation of the mouse oocyte. Dev Biol 50: 531–536, 1976.

    PubMed  CAS  Google Scholar 

  71. Canipari R, Palombi F, Riminucci M, Mangia F: Early programming of maturation competence in mouse oogenesis. Dev Biol 102: 519–524, 1984.

    PubMed  CAS  Google Scholar 

  72. Channing CP, Liu CO, Jones GS, Jones H: Decline of follicular oocyte maturation inhibitor coincident with maturation and achievement of fertilizability of oocytes recovered at midcycle of gonadotropin treated women. Proc Natl Acad Sci USA 80: 4184–4188, 1983.

    PubMed  CAS  Google Scholar 

  73. Hillensjo T, Brannstorm M, Chari S, Daume E, Magnusson C, Nilsson L, Sjogren A, Tornell J: Oocyte maturation as regulated by follicular factors. In: In Vitro Fertilization and Embryo Transfer. M Seppala, RG Edwards (eds), Ann N Y Acad Sci 442: 73–79, 1985.

    Google Scholar 

  74. McLachlan RI, Healy DL, Robertson DM, De Kretser DM, Burger HG: Inhibin: circulating levels in women during ovulation induction and detection in human placentae by specific radioimmunoassay. Fifth World Congress on In Vitro Fertilization and Embryo Transfer. Norfolk, Virginia, ps-019, 1987.

    Google Scholar 

  75. McNatty KP: Follicular fluid. In: Vertebrate Ovary, RE Jones (eds), New York: Plenum Press, p 215–259, 1978.

    Google Scholar 

  76. Yanagishita M, Hascall VC: Biosynthesis of proteoglycans by rat granulosa cells cultured in vitro. J Biol Chem 258: 12849–12856, 1979.

    Google Scholar 

  77. Yanagishita M, Hascall VC, Rodbard D: Biosynthesis of proteoglycans by rat granulosa cells cultured in vitro: Modulation by gonadotropins, steroid hormones, protaglandins and a cyclic nucleotide. Endocrinology 109: 1641–1649, 1981.

    PubMed  CAS  Google Scholar 

  78. Grimek HJ, Bellin ME, Ax RL: Characteristics of proteoglycans isolated from small and large bovine ovarian follicles. Biol Reprod 30: 397–409, 1984.

    PubMed  CAS  Google Scholar 

  79. Bellin ME, Ax RL: Chondroitin sulfate: an indicator of atresia in bovine follicles. Endocrinology 114: 428–434, 1984.

    PubMed  CAS  Google Scholar 

  80. Lens RW, Ball GD, Lohse JK, First NL, Ax RL: Chondroitin sulfate facilitates an acrosome reaction in bovine spermatozoa as evidenced by light microscopy, electron microscopy and in vitro fertilization. Biol Reprod 28: 683–690, 1983.

    Google Scholar 

  81. Tesarik J, Kopecny V, Dvorak M: Selective binding of human cumulus cell-secreted glycoproteins to human spermatozoa during capacitation in vitro. Fertil Steril 41: 919–925, 1984.

    PubMed  CAS  Google Scholar 

  82. Tesarik J, Kopency V: Late preovulatory synthesis of proteoglycans by the human oocyte and cumulus cells and their secretion into the oocyte-cumulus-complex extracellular matrices. Histochemistry 83: 523–528, 1986.

    Google Scholar 

  83. Motta PM: Sur l’ultrastructure des “corps de Call et Exner” dans l’ovaire du lapin. Z Zellforsh Mikrosk Anat 68: 308–319, 1965.

    CAS  Google Scholar 

  84. Zamboni L: Fine Morphology of Mammalian Fertilization. New York: Harper and Row, 1971.

    Google Scholar 

  85. Motta PM, Nesci E: The Call and Exner bodies of mammalian ovaries with reference to the problem of rosette formation. Arch Anat Micr Morph Exp 58: 283–290, 1969.

    PubMed  CAS  Google Scholar 

  86. Anderson E, Wilkinson RF, See G, Meiler S: A correlative microscopical analysis of differentiating Ovarian follicles of mammals J Morphol 156: 339–365, 1978.

    PubMed  CAS  Google Scholar 

  87. Motta PM, Van Blerkom J: A scanning electron microscopic study of the luteo-follicular complex. I. Follicle and oocyte. J Submicr Cytol 6: 297–310, 1974.

    Google Scholar 

  88. Motta PM, Van Blerkom J: Structure and ultrastructure of ovarian follicles. In: Human Ovulation. ESE Hafez (eds), Amsterdam: Elsevier, North-Holland, p 17–38, 1979.

    Google Scholar 

  89. Motta PM, Makabe S: Morphodynamic changes of the mammalian ovary in normal and some pathological conditions. A scanning electron microscopic study. Biomedl Res 2s: 325–339, 1981.

    Google Scholar 

  90. Motta PM: Ovulation: A three-dimensional correlative analysis by scanning and transmission electron microscopy. In: Psychoneuroendocrinology in Reproduction. L Zichella, P Pancheri (eds), Amsterdam: Elsevier North-Holland Biomedical Press, p 145–155, 1979.

    Google Scholar 

  91. Makabe S: Scanning electron microscopy of normal and anovulatory human ovaries. Advances in the Morphology of Cell Tissues. EA Vidrio, MA Galina (eds), New York: Alan Liss Inc, p 321–330, 1981.

    Google Scholar 

  92. Amsterdam A, Koch Y, Siebermann E, Lindner HR: Distribution of binding sites for human chorionic gonadotropin in the preovulatory follicle of the rat. J Cell Biol 67: 894–899, 1975.

    PubMed  CAS  Google Scholar 

  93. Motta PM, Di Dio LJA: Microfilaments in granulosa cells during the development of the follicle and its transformation in corpus luteum in the rabbit ovary. J Submicrosc Cytol 6: 15–27, 1974.

    Google Scholar 

  94. Cavallotti C, DiDio LJA, Familiari G, Fumagalli G, Motta PM: Microfilaments in granulosa cells of rabbit ovary: immunological and ultrastructural observations. Acta Histochem 5: 253–256, 1975.

    Google Scholar 

  95. Batten EB, Anderson E: The distribution of actin in cultured ovarian granulosa cells. Am J Anat 167: 395–404, 1983.

    PubMed  CAS  Google Scholar 

  96. Cran DG, Musk L: The distribution of actin in sheep ovaries. J Exp Zool 235: 375–380, 1985.

    PubMed  CAS  Google Scholar 

  97. Ben Ze’ev A, Amsterdam H: Regulation of cytoskeletral proteins involved in cell contact formation during differentiation of granulosa cells on extracellular matrix. Proc Natl Acad Sci USA 83: 2894–2898, 1986.

    Google Scholar 

  98. Albertini DF, Fawcett DW, Olds PJ: Morphological variations in gap junctions of ovarian granulosa cells. Tissue & Cell 7: 389–405, 1975.

    CAS  Google Scholar 

  99. Fuksuhima M: Intercellular junctions in the human developing preovulatory follicle and corpus luteum. Int J Fertil 22: 206–216, 1977.

    Google Scholar 

  100. Familiari G, Toscano V, Motta PM: Morphological studies of polycystic mouse ovaries induced by dehydroepiandrosterone. Cell Tissue Res 240: 519–528, 1985.

    PubMed  CAS  Google Scholar 

  101. Toshimori K, Oura C: Cellular interconnections in the young mouse ovary. Cell Tissue Res 224: 383–395, 1982.

    PubMed  CAS  Google Scholar 

  102. Familiari G, Nottola SA, Motta PM: Focal cell contacts detected by ruthenium red, triton X 100 and Saponin in the granulosa cells of mouse ovary. Tissue & Cell 19: 207–215, 1987.

    CAS  Google Scholar 

  103. Albertini DF: Structural modifications of the granulosa cell plasma membrane during folliculogenesis. In: Biology of the Ovary. PM Motta ESE Hafez (eds), The Hague Boston: Martinus Nijhoff, p 138–149, 1980.

    Google Scholar 

  104. Hiura M, Fujita H: Electron microscopy of the cytodif-ferentiation of the theca cell in the mouse ovary. Arch Istol Jap 40: 95–105, 1977.

    CAS  Google Scholar 

  105. Hart DM, Baillie AH, Caiman KC, Ferguson MM: Hydroxysteroid dehydrogenase development in the mouse adrenals and gonads. In: Developments in Steroid Histochemistry. New York: Academic Press, Chap 5, 1966.

    Google Scholar 

  106. Christensen AK, Gillim SW: The correlation of fine structure and function in steroidsecreting cells, with emphasis on those of the gonads. In: The Gonads. McKerns (ed), New York: Appleton-Century Crofts, p 415–488, 1969.

    Google Scholar 

  107. Channing CP, Coudert SP: Contribution of granulosa cells and follicular fluid to ovarian estrogen secretion in the rhesus monkey in vivo. Endocrinology 98: 590–597, 1976.

    PubMed  CAS  Google Scholar 

  108. Moor RM: Sites of steroid production in ovine Graafian follicles in culture. J Endocr 73: 143–150, 1977.

    CAS  Google Scholar 

  109. Makris A, Ryan HJ: Progesterone, androstenedione, testosterone, estrone and estradiol synthesis in hamster ovarian follicle cells. Endocrinology 96: 694–701, 1975.

    PubMed  CAS  Google Scholar 

  110. Fortune JE, Armstrong DT: Androgen production by isolated components of rat ovarian follicles. In: Ovarian Follicular Development and Function. AR Migdley, A Sadler (eds), New York: Raven Press, p 193–198, 1979.

    Google Scholar 

  111. Sporrong B, Kannisto P, Owman CH, Sjoberg NO, Walles B: Histochemistry and ultrastructure of adrenergic and acetylcholinesterase-containing nerves supplying follicles and endocrine cells in the guinea-pig ovary. Cell Tissue Res 240: 505–511, 1985.

    PubMed  CAS  Google Scholar 

  112. Kanzaki O, Man I, Morikawa O, Nishimura T: Scanning Electron Microscopic observation of microcorrosion casts for rabbit ovarian vasculature; a preliminary study. Acta Obst Gynaec JPN 32: 422–426, 1980.

    Google Scholar 

  113. Fumagalli Z, Motta PM: Sulla presenza al Microscopio Elettronico di cellule muscolari lisce nell’ovaio di alcuni mammiferi. Arch Ital Anat Embriol 57: 1969.

    Google Scholar 

  114. Burden HW: Ultrastructural observations on ovarian perifollicular smooth muscle in the cat, guinea pig and rabbit. Am J Anat 133: 125–142, 1972.

    PubMed  CAS  Google Scholar 

  115. Amsterdam A, Lindner HR, Groschal-Stewart U: Localization of actin and myosin in the rat oocyte and follicular wall by immunofluorescence. Anat Rec 187: 311–328, 1977.

    PubMed  CAS  Google Scholar 

  116. Amenta F, Allen DJ, Di Dio LJA, Motta PM: A transmission electron microscopic study of smooth muscle cells in the ovary of rabbits, cats, rats and mice. J Submicrosc Cytol 11: 39–51, 1979.

    Google Scholar 

  117. Pandergrass P, Talbot P: The distribution of contractile cells in the apex of the preovulatory hamster follicle. Biol Reprod 20: 205–213, 1979.

    Google Scholar 

  118. Motta PM, Familiari G: Occurrence of a contractile tissue in the theca externa of atretic follicles in the mouse ovary. Acta Anat 109: 103–114, 1981.

    PubMed  CAS  Google Scholar 

  119. Amenta F, Cavallotti C, Correr S, Familiari G: Innervazione adrenergica della componente endocrina dell’ovaio del topo. Prog Med 34: 175–179, 1978.

    Google Scholar 

  120. Walles B, Edvisson L, Falck B, Owman CH, Sjoberg UN, Svensson KG: Evidence for a neuromuscular mechanism involved in the contractility of the ovarian follicular wall: Fluorescence and Electron Microscopy and effects of tyramine on follicle strips. Biol Reprod 12: 239–248, 1975.

    PubMed  CAS  Google Scholar 

  121. Moor RM, Warnes GM: Regulation of meiosis in mammalian oocytes. Br Med Bull 35: 99–100, 1979.

    PubMed  CAS  Google Scholar 

  122. Bomsel-Helmreich O, Gougeon A, Thibault A, Saltarelli D, Milgrom E, Frydman R, Papiernik E: Healthy and atretic human follicles in the preovulatory phase: differences in evolution of follicular fluid. J Clin Endocr Metab 48: 686–694, 1979.

    PubMed  CAS  Google Scholar 

  123. Ireland JJ, Roche JF: Development of nonovulatory antral follicles in heifers: changes in steroids in follicular fluid and receptors for gonadotropins. Endocrinology 112: 150–156, 1983.

    PubMed  CAS  Google Scholar 

  124. Callesen H, Greene T, Hyttel P: Follicular steroids and ovarian development in superovulated dairy cattle. A preliminary report. J In Vitro Fert Em Transf 1: 101 a, 1984.

    Google Scholar 

  125. Liu HC, Sandow BA, Rosenwaks Z: Follicular fluid and oocyte maturation. In: In Vitro Fertilization. HW Jones Jr, G Seegar-Jones, GD Hodgen, Z Rosenwaks (eds), Norfolk: Pb Williams and Wilkins p 106–125, 1986.

    Google Scholar 

  126. Le Maire WJ, Janson PO, Kallfelt BJ, Holmes PV, Cajander S, Bjersing L, Ahren KEB: The preovulatory decline in follicular oestradiol is not required for ovulation in the rabbit. Acta Endocrinol 101: 452–458, 1982.

    Google Scholar 

  127. Tsafriri A, Bar-Ami S, Lindner HR: Control of the development of meiotic competence and of oocyte maturation in mammals. In: Fertilization of the Human Egg in Vitro. HM Beier, HR Lindner (eds), Berlin: Springer-Verlag, p3–17, 1983.

    Google Scholar 

  128. Dvorak M, Tesarik J: Ultrastructure of human ovarian follicles. In; Biology of the Ovary. PM Motta, ESE Hafez (eds), The Hague/Boston: Martinus Nijhoff, p 121–137, 1980.

    Google Scholar 

  129. Okada A, Yanagimachi R, Yanagimachi H: Development of a cortical granule-free area of cortex and the perivitelline space in the hamster oocyte during maturation and following ovulation. J Submicrosc Cytol 18: 233–247, 1986.

    PubMed  CAS  Google Scholar 

  130. Szollosi D, Mandelbaum J, Plachot M, Salat-Baroux J, Cohen, J: Ultrastructure of the human preovulatory oocyte. J in Vitro Fert Emb Transf 3: 232–242, 1986.

    CAS  Google Scholar 

  131. Sathananthan AH. Trounson AO: Ultrastructural observation on cortical granules in human follicular oocytes cultured in vitro. Gamete Res 5: 191–198, 1982.

    Google Scholar 

  132. Motta PM, Nottola SA, Familiari G, Micara G: Ultrastructure of human unfertilized oocytes and embryos in an in vitro fertilization program. Ann NY Acad Sci, in press.

    Google Scholar 

  133. Phillips DM, Shalgi R: Surface architecture of the mouse and hamster zona pellucida and oocyte. J Ultrastruct Res 72: 1–12, 1980.

    CAS  Google Scholar 

  134. Ebensperger C, Barros C: Changes at the hamster oocyte surface from the germinal vesicle stage to ovulation. Gamete Res 9: 387–397, 1984.

    Google Scholar 

  135. Longo FJ, Chen DY: Development of surface polarity in mouse eggs. Scanning Electron Microscopy II: 23–36, 1984.

    Google Scholar 

  136. Wolf DE, Ziomek CA: Regionalization and lateral diffusion of membrane proteins in unfertilized and fertilized mouse eggs. J Cell Biol 96: 1786–1790, 1983.

    CAS  Google Scholar 

  137. Longo FJ, Chen DY: Development of cortical polarity in mouse eggs. Involvement of the meiotic apparatus. Dev Biol 107: 382–394, 1984.

    Google Scholar 

  138. Longo FJ: Fine structure of the mammalian egg cortex. Am J Anat 174: 303–315, 1985.

    PubMed  CAS  Google Scholar 

  139. Suzuki F, Yanagimachi R: Freeze-fracture observations of ovulated hamster oocytes with their cumulus cells. Cell Tissue Res 231: 265–274, 1983.

    PubMed  CAS  Google Scholar 

  140. Koehler JK, De Curtis I, Stenchever MA, Smith D: Interaction of human sperm with zona-free hamster eggs. A freeze-fracture study. Gamete Res 6: 371–386, 1982.

    Google Scholar 

  141. Koehler JK, Clark JM, Smith D: Freeze-fracture observations on mammalian oocytes. Am J Anat 174: 317–329, 1985.

    PubMed  CAS  Google Scholar 

  142. Clark JM, Koehler JK, Smith WD: Freeze-fracture observations of unfertilized and fertilized hamster oocytes with special reference to the use of lipid probes. Gamete Res 14:129–147, 1986.

    Google Scholar 

  143. Albertini DF: Novel morphological approaches for the study of oocyte maturation. Biol Reprod 30:13–28, 1984.

    PubMed  CAS  Google Scholar 

  144. Hyttel P, Callesen H, Greene T: Ultrastructural features of preovulatory oocyte maturation in superovulated cattle. J Reprod Fertil 76: 645–656, 1986.

    PubMed  CAS  Google Scholar 

  145. Hyttel P, Xu KP, Smith S, Greeve T: Ultrastructure of in vitro oocyte maturation in cattle. J Reprod Fertil 78: 615–625, 1986.

    CAS  Google Scholar 

  146. Zamboni L, Thompson PS, Moore-Smith D: Fine morphology of human oocyte maturation in vitro. Biol Reprod 7: 425–457, 1972.

    PubMed  CAS  Google Scholar 

  147. Motta PM, Van Blerkom J: A scanning electron microscopic study of the luteo-follicular complex, II: Events leading to ovulation. Am J Anat 143: 241–264, 1975.

    PubMed  CAS  Google Scholar 

  148. Sundstrom P: Interaction between spermatozoa and ovum “in vitro”. In: Atlas of Human Reproduction by Scanning Electron Microscopy. ESE Hafez, P Kenemans (eds), Lancaster, Boston, The Hague: MTP Press Ltd, p 225–230, 1982.

    Google Scholar 

  149. Nottola SA, Familiari G, Petrillo S, Micara G, Aragona L, Carenza L, Motta PM: La zona pellucida di ovociti umani sottoposti a fecondazione in vitro e la sua interazione con gli spermatozoi. Studio al microscopio elettronico a scansione. LXIV Congr Naz Soc It Ginec Ostet A cura di A Bompiani, L Carenza, B Salvadori, A Pachi (eds) Monduzzi, Bologna, p 2091–2096, 1986.

    Google Scholar 

  150. Familiari G, Nottola SA, Petrillo S, Micara G, Aragona L, Motta PM: The application of electron microscopy in the evaluation of in vitro unfertilized human oocytes. In: Morphological Basis of Human Reproductive Function. G Spera, DM de Kretser (eds), New York, London: Plenum Press, and Rome: Acta Meidca, p 99–104, 1987.

    Google Scholar 

  151. Bjersing L, Cajander S: Ovulation and the mechanism of follicle rupture. IV. Ultrastructure of membrane granulosa of rabbit Graafian follicles prior to induced ovulation. Cell Tissue Res 153: 1–14, 1974.

    PubMed  CAS  Google Scholar 

  152. Dekel N, Kraicer PF: Induction in vitro of mucification of rat cumulus oophorus by gonadotropins and cAMP. Endocrinology 102: 1797–1802, 1980.

    Google Scholar 

  153. Cajander S, Janson PO, Lemaire WJ, Kallfelt BJ, Holmes PV, Ahrén K, Bjersing L: Studies on the morphology of the isolated perfused rabbit ovary. I° Effect of long-term perfusion. Cell Tissue Res 235: 59–63, 1984.

    PubMed  CAS  Google Scholar 

  154. Cajander S, Janson PO, Le Maire WJ, Kallfelt BJ, Holmes PV, Ahrén K, Bjersing L: Studies on the morphology of the isolated perfused rabbit ovary. II. Ovulation in vitro after HCG treatment in vivo. Cell Tissue Res 235: 565–573, 1984.

    PubMed  CAS  Google Scholar 

  155. Wallach EE, Okuda Y, Kanzaky Y, Okamura H, Santulli R, Wright KH: Ultrastructure of ovarian follicles “in vitro” perfused rabbit ovaries: response to human chorionic gonadotropin and comparison with in vivo observations. Fertil Steril 42: 127–133, 1984.

    PubMed  CAS  Google Scholar 

  156. Mestwerdt W: Die Follikel. Granulosazellen in Beziehung zur Steroid Biosynthese in der Periovulationsphase. Fortschr Med 95: 361–368, 1977.

    PubMed  CAS  Google Scholar 

  157. Makabe S, Kaneko Y, Kojima E, Omura G, Momose K. The human granulosa cell changes during luteogenesis viewed by scanning and transmission electron microscopy. In: In Vitro Fertilization, Embryo Transfer and Early Pregnancy. RF Harrison, J Bonnar, W Thompson (eds), Lancaster, Boston, The Hague: MTP Press, p 33–37, 1983.

    Google Scholar 

  158. Nagai N: Electron microscopic study on the structure and the function of the granulosa cell in the human ovary. Ultrastructure and 3-beta hydroxysterod dehydrogenase activity. Nippon Sanka Fujinka Gakkai Zasshi 37: 871–878, 1985.

    PubMed  CAS  Google Scholar 

  159. Rotmesh S, Dor J, Furman A, Rudak E, Mashiach S, Amsterdam A: Ultrastructural characterization of human granulosa cells in stimulated cycles: correlation with oocyte fertilizability. Fertil Steril 45: 671–679, 1986.

    Google Scholar 

  160. Delforge JP, Thomas K, Roux F, Carneiro de Siqueira J, Ferin J: Time relationships between granulosa cell growth and luteinization, and plasma luteinizing hormone discharge in humans. I. A Morphometric analysis. Fertil Steril 23: 1–7, 1972.

    PubMed  CAS  Google Scholar 

  161. Di Zerega GS, Marrs RP, Campeau JD, and Kling OR: Human granulosa cell secretion of proteins which suppress follicular response to gonadotropins. J Chem 56: 147–153, 1983.

    Google Scholar 

  162. Beers WH, Strickland S, Reich E: Ovarian plasminogen activator: relationship to ovulation and hormonal regulation. Cell 6: 387–394, 1975.

    PubMed  CAS  Google Scholar 

  163. Beers WH: Follicular plasminogen and plasminogen activator and the effect of plasmin on ovarian follicle wall. Cell 6: 379–386, 1975.

    PubMed  CAS  Google Scholar 

  164. Shimada H, Mori T, Takada A, Takada Y, Noda Y, Takai I, Kohda H, Nishimura T: Use of chromogenic substrate S-2251 for determination of plasminogen activator in rat ovaries. Thromb Haemostasis 46: 507–510, 1981.

    CAS  Google Scholar 

  165. Espey LL, Shimada H, Okamura H, Mori T: Effect of various agents on ovarian plasminogen activator activity during ovulation in pregnant mare’s serum gonadotropin-primed immature rats. Biol Reprod 32: 1087–1094, 1985.

    PubMed  CAS  Google Scholar 

  166. Solomkin JS, Simmons RL: Cellular and subcellular mediators of acute inflammation. Surg Clin North Amer 63: 225–243, 1983.

    CAS  Google Scholar 

  167. Valinsky JE, Reich E, Le Dourain NM: Plasminogen activator in cell migration and morphogenesis in the bursa of fabricius. In: Embryonic Development, Part A: Genetic Aspects. New York: Alan Liss Inc, p 473–480, 1982.

    Google Scholar 

  168. Espey LL: Cycloheximide inhibition of ovulation, prostaglandin biosynthesis and steroidogenesis in rabbit ovarian follicles. J Reprod Fert 78: 679–683, 1986.

    CAS  Google Scholar 

  169. Byskov AGS: Ultrastructural studies on the prevoulatory follicle in the mouse ovary. Z Zellforsh 100: 285–299, 1969.

    CAS  Google Scholar 

  170. El-Fouly MA, Cook B, Nekola M, Nalbandov AV: Role of the ovum in follicular luteinization. Endocrinol 87: 288–297, 1970.

    CAS  Google Scholar 

  171. Dekel N, Phillips DM: Maturation of the rat cumulus oophorus. A Scanning Electron Microscopic study. Biol Reprod 21: 9–18, 1979.

    PubMed  CAS  Google Scholar 

  172. Nicosia SV, Mikhail G: Cumuli oophori in tissue ultrastructure: hormone production, ultrastructure and morphometry of early luteinization. Feral Steril 26: 427–448. (1975)

    CAS  Google Scholar 

  173. Talbot P, DiCarlantonio G: Architecture of the hamster oocyte cumulus complex. Gamete Research 9: 261–272, 1984.

    Google Scholar 

  174. Talbot P, Di Carlantonio G: The oocyte cumulus complex: Ultrastructure of the extracellular components in hamsters and mice. Gamete Research 10: 127–142, 1984.

    Google Scholar 

  175. Hyttel PJ: Bovine cumulus-oocyte disconnection in vitro. Anat Embryol 176: 41–44, 1987.

    PubMed  CAS  Google Scholar 

  176. Salustri A, Siracusa G: Metabolic coupling, cumulus expansion, and meiotic resumption in mouse cumuli oophori cultured in vitro in the presence of FSH, of cAMP, or stimulated in vivo by HGC. J Reprod Fertil 68: 335–341, 1983.

    PubMed  CAS  Google Scholar 

  177. Larsen J, Wert E, and Brunner D: A dramatic loss of cumulus cell gap junctions is correlated with germinal vesicle breakdown in rat oocytes. Dev Biol 113: 517–521, 1986.

    PubMed  CAS  Google Scholar 

  178. Tsafriri A, Channing CP: An inhibitory influence of granulosa cells and follicular fluid upon porcine oocyte meiosis in vitro. Endocrinology 96: 922–927, 1975.

    PubMed  CAS  Google Scholar 

  179. Tsafriri A, Channing CP: Influence of follicular maturation and culture condition on the meiosis of pig oocytes in vitro. J Reprod Fertil 43: 49–152, 1975.

    Google Scholar 

  180. Leibfried L, First NL: Follicular control of meiosis in the porcine oocyte. Biol Reprod 23: 705–709, 1980.

    PubMed  CAS  Google Scholar 

  181. Bjersing L, Cajander S: Ovulation and the mechanism of follicle rupture. IV. Ultrastructure of theca interna and the inner vascular network surrounding rabbit Graafian follicles prior to induced ovulation. Cell Tissue Res 153, 31–77, 1974.

    PubMed  CAS  Google Scholar 

  182. Otsuki Y, Magari S, Sugimoto O: Lymphatic capillaries in rabbit ovaries during ovulation: an ultrastructural study. Lymphology 19: 55–64, 1986.

    PubMed  CAS  Google Scholar 

  183. Parr EL: Histological examination of the rat ovarian follicle wall prior to ovulation. Biol Reprod 11: 483–503, 1974.

    PubMed  CAS  Google Scholar 

  184. Cherney DD, Di Dio LJA, Motta PM: The development of the rabbit ovarian follicles following copulation. Fertil Steril 26: 257–270, 1975.

    PubMed  CAS  Google Scholar 

  185. Espey LL: Ovulation, In: The Vertebrate Ovary. RE Jones (eds), New York: Plenum Press, p 503–526, 1978.

    Google Scholar 

  186. Reed M, Burton FA, Van Diest PA: Ovulation in the guinea-pig. I. The ruptured follicle. J Anat 128: 195–206, 1979.

    PubMed  CAS  Google Scholar 

  187. Kitai H, Yoshimura Y, Wright KH, Santulli R, Wallach EE: Microvasculature of preovulatory follicles. Thirty-First Annual Meeting of Society for Gynecologic Investigation, San Francisco, California, p 127, 1984.

    Google Scholar 

  188. Bjersing L, Cajander S: Ovulation and the mechanism of follicle rupture. V. Ultrastructure of tunica albuginea and theca externa of rabbit Graafian follicles prior to induced ovulation. Cell Tissue Res 153: 15–30, 1974.

    PubMed  CAS  Google Scholar 

  189. Bell C: Autonomic nervous control of reproduction: Circulatory and other factors. Pharm Rev 24: 657–736, 1972.

    PubMed  CAS  Google Scholar 

  190. Zuckerman S, Weir BJ: The Ovary 2nd edition. Vol 1. New York: Academic Press, 1977.

    Google Scholar 

  191. Espey LL: Ovarian contractility and its relationship to ovulation. A review. Biol Reprod 19: 540–551, 1978.

    PubMed  CAS  Google Scholar 

  192. Di Dio LJA, Allen DJ, Correr S, Motta PM: Smooth musculature in the ovary. In: Biology of the Ovary. PM Motta, ESE Hafez (eds), The Hague/Boston: Martinus Nijhoff, p 106–118, 1980.

    Google Scholar 

  193. Talbot P, Chacon RS: In vitro ovulation of hamster oocytes depends on contraction of follicular smooth muscle cells. J Exp Zool 224: 409–415, 1982.

    PubMed  CAS  Google Scholar 

  194. Martin G, Van Steenwyk G, Miller Walker C: The fate of thecal smooth muscle cells in postovulatory hamster follicles. Anat Rec 207: 267–277, 1983.

    PubMed  CAS  Google Scholar 

  195. Owman C, Sjobert NO, Swesson KG, Walles B: Autonomic nerves mediating contractility in the human Graafian follicle. J Reprod Fertil 45: 553–556, 1975.

    PubMed  CAS  Google Scholar 

  196. Motta PM, Charney DD, Di Dio LJA: Scanning and transmission electron microscopy of the ovarian surface in mammals with special reference to ovulation. J Submicr Cytol 3: 85–100, 1971.

    Google Scholar 

  197. Martin GG, Miller-Walker C: Visualization of three-dimensional distribution of collage fibrils over preovulatory follicles in the hamsters. J Exp Zool 225: 311–319, 1983.

    PubMed  CAS  Google Scholar 

  198. Cajander S, Bjersing L: Fine structural demonstration of acid phosphatase in rabbit germinal epithelium prior to induced ovulation. Cell Tissue Res 164: 279–289, 1975.

    PubMed  CAS  Google Scholar 

  199. Cajander S, Bjersing L: Further studies of the surface epithelium covering preovulatory rabbit follicles with special reference to lysosomal alterations. Cell Tissue Res 169: 129–141, 1976.

    PubMed  CAS  Google Scholar 

  200. Strickland S, Beers W: Studies of the enzymatic basis and hormonal control of ovulation. In: Ovarian Follicular Development and Function. AR Migdley, WA Sadler (eds), New York: Raven Press, p 143–153, 1979.

    Google Scholar 

  201. Espey LL: Ovarian proteolytic enzymes and ovulation. Biol Reprod 10: 216–235, 1974.

    PubMed  CAS  Google Scholar 

  202. Okamura H, Takenaka A, Yajima Y, Morikawa H, Nishimura T: An ultrastructural study of ovulatory changes in stromal tissue of the follicular apex in the human. Acta Obst Gynaec Jap 32: 53–60, 1980.

    CAS  Google Scholar 

  203. Espey LL: Ultrastructure of the apex of the rabbit Graafian follicle during the ovulatory process. Endocrinology 81: 267–276, 1967.

    PubMed  CAS  Google Scholar 

  204. Bjersing L, Cajander S: Ovulation and the mechanism of follicle rupture. III. Transmission electron microscopy of rabbit germinal epithelium prior to induced ovulation. Cell Tissue Res 149: 313–327, 1974.

    PubMed  CAS  Google Scholar 

  205. Espey LL: Ovarian proteolytic enzymes and ovulation. Biol Reprod 10: 216–235, 1974.

    PubMed  CAS  Google Scholar 

  206. Espey LL: Multivesicular structures in proliferating fibroblasts of rabbit ovarian follicles during ovulation. J Cell Biol 48: 437–442, 1971.

    PubMed  CAS  Google Scholar 

  207. Okamura H, Takenaka A, Yajima Y, Nishimura T: Ovulatory changes in the wall at the apex of the human Graafian follicle. J Reprod Ferti 58: 153–155, 1980.

    CAS  Google Scholar 

  208. Willoughby DA, Sedgwick A, Edwards J: The inflammatory response. In: Marker Proteins in Inflammation. RC Allen, J Bienvenu, P Laurent, RM Suskind (eds), New York: Walter de Gruyter Press, p 45–48, 1982.

    Google Scholar 

  209. Morales TI, Woessner JF Jr, Marsh JM, Le Maire WJ: Collagen, collagenase and collagenolytic activity in rat Graafian follicles during follicular growth and ovulation. Biochim Biophys Acta 756: 119–122, 1983.

    PubMed  CAS  Google Scholar 

  210. Reich R, Tsafriri A, Mechanic GL: Studies on the involvement of collagenase and of plasmin in ovulation. Biol Reprod 30 (suppl 1): 93, 1983.

    Google Scholar 

  211. Ichikawa S, Ohta M, Morioka H, Murao S: Blockage of ovulation in the explanted hamster ovary by a collagenase inhibitor. J Reprod Fertil 68: 17–19, 1983.

    PubMed  CAS  Google Scholar 

  212. Reich R, Tsrafriri A, Mechanic GL: The involvement of collagenolysis in ovulation in the rat. Endocrinology 116: 522–527, 1985.

    PubMed  CAS  Google Scholar 

  213. Curry TE Jr., Dean DD, Woessner JF Jr, Le Maire WJ: The extraction of a tissue collagenase associated with ovulation in the rat. Biol Repord 33: 981–991, 1985.

    CAS  Google Scholar 

  214. Espey LL: Ovulation as an inflammatory reaction. A hypothesis. Biol Reprod, 22: 73–106, 1980.

    PubMed  CAS  Google Scholar 

  215. Cajander S: Structural alterations of rabbit ovarian follicles after mating with special reference to the overlying surface epithelium. Cell Tissue Res 173: 437–449, 1976.

    PubMed  CAS  Google Scholar 

  216. Blandau RJ: Anatomy of ovulation. Clin Obstet Gyecol 10: 347–360, 1967.

    Google Scholar 

  217. Pendergrass B, Reber M: Scanning electron microscopy of the Graafian follicle during ovulation in the golden hamster. J Reprod Fertil 59: 21–24, 1980.

    PubMed  CAS  Google Scholar 

  218. Van Blerkom J, Motta PM: A scanning electron microscopic study of the luteo-follicular complex. III. Formation of the corpus luteum and repair of the ovulated follicle. Cell Tissue Res 189: 131–154, 1978.

    PubMed  Google Scholar 

  219. Osterholzer HO, Johnson JH, Nicosia SV: An autoradiographic study of rabbit ovarian surface epithelium before and after ovulation. Biol Reprod 33: 729–738, 1985.

    PubMed  CAS  Google Scholar 

  220. Makabe S, Hefez ESE, Motta PM: The ovary and ovulation. In: Atlas of Human Reproduction by Scanning Electron Microscopy. ESE Hafez, P Kenemans (eds), Lancaster: MTP Press, p 135–144, 1982.

    Google Scholar 

  221. Nicosia SV: Cytological analysis of in vivo and in vitro luteinization. In: Endocrine Physiopathology of the Ovary. R Tozzin, G Reeves, RL Pineda (eds), Amsterdam: Elsevier North-Holland, p 101–119, 1980.

    Google Scholar 

  222. Yuh KC, Possley RM, Brabec RK, Keyes PL: Steroidogenic and morphological characteristics of granulosa and thecal compartments of the differentiating rabbit corpus luteum in culture. J Reprod Fertil 76: 267–277, 1986.

    PubMed  CAS  Google Scholar 

  223. Soto EA, Kliman HJ, Strauss JF, Paavola LG: Gonadotropins and cyclic adenosine 3′, 5′ — monophosphate (cAMP) alter the morphology of cultured human granulosa cells. Biol Reprod 34: 559–569, 1986.

    PubMed  CAS  Google Scholar 

  224. Theodosis DT, Wooding FB, Sheldrick EL, Flint AP: Ultrastructural localization of oxytocin and neurophysin in the bovine corpus luteum. Cell Tissue Res 243: 129–135, 1986.

    PubMed  CAS  Google Scholar 

  225. Wathes DC, Swann RW: Is oxytocin an ovarian hormone? Nature (London) 297: 225–227, 1982.

    CAS  Google Scholar 

  226. Wakins WB: Immunohistochemical localization of neurophysin and oxytocin in sheep corpora lutea. Neuropeptides 4: 51–54, 1983.

    Google Scholar 

  227. Guldenaar SEF, Wathes DC, Pickering BT: Immunocytochemical evidence for the presence of oxytocin and neurophysin in the large cells of the bovine corpus luteum. Cell Tissue Res 237: 349–352, 1984.

    PubMed  CAS  Google Scholar 

  228. Sheldrick EL, Flint APF: Circulating concentrations of oxytocin during the estrous cycle and early pregnancy in sheep. Prostaglandins 22: 631–636, 1981.

    PubMed  CAS  Google Scholar 

  229. Shams D, Prokopp S, Barth D: The effect of active and passive immunization against oxytocin on ovarian cyclicity in ewes. Acta Endocr Copenh 103: 337–344, 1983.

    Google Scholar 

  230. Vaupel MR, Sherwood OD, Anderson MB: Immunocytochemical studies of relaxin in ovaries of pregnant and cycling mice. J Histochem Cytochem 33: 303–308, 1985.

    PubMed  CAS  Google Scholar 

  231. Fields PA, Fields MJ: Ultrastructure localization of relaxin in the corpus luteum of the nonpregnant, pseudopregnant and pregnant pig. Biol Reprod 32: 1169–1179, 1985.

    PubMed  CAS  Google Scholar 

  232. Henderson KM: Gonadotrophic regulation of ovarian activity. Brit Med Bull 35: 161–166, 1979.

    PubMed  CAS  Google Scholar 

  233. Schmidt G, Owman CH, Sjoberg NO: Histamine induces ovulation in the isolated perfused rat ovary. J Reprod Fertil 78: 159–166, 1986.

    PubMed  CAS  Google Scholar 

  234. Le Maire WJ, Yang NST, Behrman HH, Marsh JM: Preovulatory changes in the concentration of prostaglandins in rabbit Graafian follicles. Prostaglandins 3: 367–376, 1973.

    Google Scholar 

  235. Marsh JM, Le Maire WJ: The role of cyclic AMP and prostaglandins in the actions of luteinizing hormone. In: Gonadotropins and Gonadal Function. NR Moudgal (eds), New York: Academic Press, p 376–390, 1973.

    Google Scholar 

  236. Rigler GL, Peake GT, Rainer A: Effects of follicle stimulating hormone and luteinizing hormone on ovarian cyclic AMP and prostaglandin E. In vivo in rats treated with indomethacin. J Endocrinol 70: 285–291, 1976.

    PubMed  CAS  Google Scholar 

  237. Zor U, Strulovici B, Nimrod A, Lindt HR: Stimulation by cyclic nuceleotids of prostaglandin E production in isolated Graafian follicles. Prostaglandins 14: 947–959, 1977.

    PubMed  CAS  Google Scholar 

  238. Yang NST, Marsh JM, Le Maire WJ: Post ovulatory changes in the concentration of prostaglandis in rabbit Graafian follicles. Prostaglandins 6: 37–44, 1974.

    PubMed  CAS  Google Scholar 

  239. Zor U, Lamprecht SA: Mechanisms of prostaglandin action in endocrine glands. In: Biochemical Actions of Hormones, Vol 4. G Litwack (ed), New York: Academic Press, p 85–133, 1977.

    Google Scholar 

  240. Espey LL, Coons P, Marsh J, Le Maire WJ: Effect of indomethacin on preovulatory changes in the ultrastructure of rabbit Graafian follicles. Endocrinology 108: 1040–1048, 1981.

    PubMed  CAS  Google Scholar 

  241. Martin GG, Talbot P: Drugs that block smooth muscle contraction inhibit in vivo ovulation in hamsters. J Exp Zool 216: 483–491, 1981.

    PubMed  CAS  Google Scholar 

  242. Downs SM, Longo FJ: An ultrastructural study of preovulatory apical development in mouse ovarian follicles: effects of indomethacin. Anat Rec 205: 159–168, 1983.

    PubMed  CAS  Google Scholar 

  243. Ischikawa SE, Saito T, Yoshida S: The effect of prostaglandins on the release of arginine vasopressin from the guinea pig hypothalamo-neurohyphophyseal complex in organ culture. Endocrinology 108: 193–198, 1981.

    Google Scholar 

  244. Cheesman DW, Schlegel R, Sagasay AM, Forsham PH: Anovulatory effect of synthetic analogs of arginine vasotocin in the rat. Endocrinology 112: 267–269, 1983.

    Google Scholar 

  245. Punnonen RH, Viinamaki O, Kujansun ET, Heinonen PK, Pystynen PP: A possible role of vasopressin in the control of ovarian activity. In: In Vitro Fertilization and Embryo Transfer. M Seppala, RG Edwards (eds), Ann N Y Acad Sci 442: 236–239, 1985.

    Google Scholar 

  246. Wathes DC, Guldenaar SEF, Swann RW, Webb R, Porter DG, Pickering BT: A combined radioimmunoassay and immunocytochemical study of ovarian oxytocin production during the periovulatory period in the ewe. J Reprod Fertil 78: 167–183, 1986.

    PubMed  CAS  Google Scholar 

  247. Flint APF, Sheldrick EL: Ovarian secretion of oxytocin is stimulated by prostaglandin. Nature 297: 587–588, 1982.

    PubMed  CAS  Google Scholar 

  248. Balboni GC, Vannelli GB: La relaxine dans les follicules de l’ovaire. Bull Ass Anat 67: 149–162, 1983.

    CAS  Google Scholar 

  249. Bryant-Greenwood GD, Too CK, Koai E, Greenwood FC: Relaxin as a local hormone in ovulation and parturition. 1st Int Conference on Human Relaxin, Florence, 1982.

    Google Scholar 

  250. Westergaard L, Sinosich MJ, Grudzinskas JG, Boeton T, McNatty KP, Saunders DM, Teisner B, Westergaard J: Pregnancy-associated plasma protein-A in preovulatory and nonovulatory healthy and atretic human ovarian follicles during the natural cycle. In: In Vitro Fertilization and Embryo Transfer. M Seppala, RG Edwards (eds), Ann NY Acad Sci 442: 205–211, 1985.

    Google Scholar 

  251. Sinosich MJ, Saunders DM, Grudzinskas JG: Pregnancy-associated Plasma Protein A and placental Protein 5 in human ovarian follicular fluid. In: In Vitro Fertilization and Embryo Transfer. M Seppala, RG Edwards (eds), Ann NY Acad Sci 442: 269–275, 1985.

    Google Scholar 

  252. Imoedemhe D, Shaw RW: Follicular fluid alpha, 1 antitrypysin — correlation with fertilizing capacity of oocytes. Br J Obstet Gynaeco 93: 863–868, 1986.

    CAS  Google Scholar 

  253. Sinosich MJ, Westergaard LW, Teismer B, Westergaard JD, Grundizinskas JG, Saunders DM: Pregnancy associated plasma protein A in human ovarian follicular fluid. In: Proceedings of XXXII Colloquium on Protides of Biological Fluids. Oxford: Pergamon Press, p 259–262, 1984.

    Google Scholar 

  254. Bagdasarian A, Wheeler J, Stewart GJ, Ahmed SS, Colman RW: Isolation of alpha 1 — protease inhibitor from human normal malignant ovarian tissue. J Clin Invest 67: 281–291, 1981.

    PubMed  CAS  Google Scholar 

  255. Sinosich MJ, Porter R, Sloss P, Bonifacio MD, Saunders DM: Pregnancy associated plasma protein A in human follicular fluid. J Clin Endocrino Metab 58: 500–504, 1984.

    CAS  Google Scholar 

  256. Jewelewicz R: Management of infertility resulting from anovulation. Am J Obstet Gynecol 122: 309–316, 1975.

    Google Scholar 

  257. Temmerman M, Devroey P, Naaktgeboren N, Amy JJ, Van Steirteghem AC: Incidence, recurrence and treatment of the luteinized unruptured follicle syndrome. Acta Eur Fertil 15: 179–316, 1984.

    PubMed  CAS  Google Scholar 

  258. Hamilton CJCM, Wetzels LCG, Evers JLH, Hoogland HJ, Mujtjens A, De Haan J: Follicle growth curves and hormonal patterns in patients with the luteinized unruptured follicle syndrome. Fertil Steril 43: 541–548, 1985.

    PubMed  CAS  Google Scholar 

  259. Schenken RS, Werlin LB, Williams RF, Prihoda TJ, Hodgen GD: Histologie and hormonal documentation of the luteinized unruptured follicle syndrome. Am J Obstet Gynecol 154: 839–847, 1986.

    PubMed  CAS  Google Scholar 

  260. Coulam CB, Hill LM, Breckle R: Ultrasonic evidence for luteinization of unruptured preovulatory follicles. Fertil Steril 37: 524–531, 1982.

    PubMed  CAS  Google Scholar 

  261. Gibbons WE, Buttram VC Jr, Rossavik IK: The observed incidence of luteinized unruptured follicles in a population of infertile women undergoing ovulation monitoring by ultrasound. Fertil Steril 41: 19–27, 1984.

    Google Scholar 

  262. Nottola SA, Micara G, Morgia F, Familiari G: Osservazioni ultrastrutturali sulle cellule della granulosa che circondano ovociti umani non fecondati dopo inseminazione “in vitro”. 42° Congresso Nazionale Società Italiana di Anatomia, Siena, 27 Settembre-1 Ottobre 1987. Abstract book, p 145, 1987.

    Google Scholar 

  263. Nottola SA, Familiari G, Micara G, Aragona C, Motta PM: On the structure and function of the cumulus-corona cells surrounding human oocytes and polypro-nuclear ova. VIII International Symposium on Morphological Sciences, Rome, 10–15 July 1988. Quaderni di Anatomia Pratica, Serie XLIV: 288, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Familiari, G., Makabe, S., Motta, P.M. (1989). The ovary and ovulation: A three-dimensional ultrastructural study. In: Van Blerkom, J., Motta, P.M. (eds) Ultrastructure of Human Gametogenesis and Early Embryogenesis. Electron Microscopy in Biology and Medicine, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1749-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1749-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8982-1

  • Online ISBN: 978-1-4613-1749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics