Skip to main content

Abstract

The study of protein stability is currently undergoing a dramatic change. Early work, especially after Kauzmann (1959), centered on the analysis of simple chemical model systems to determine the contributions of different types of interactions to stability. Amino acids that are sequestered from solvent in the folded protein were emphasized, since these groups presumably undergo the largest changes in environment during folding (Tanford, 1968, 1970; Pace, 1975; Privalov, 1979). From an inventory of interactions derived from the x-ray crystal structure of a protein, the stabilizing contribution of each amino acid be calculated using the free energies determined from thermodynamic studies of model systems. Implicit in this approach is the assumption that each interaction of specific type—each hydrogen bond, for example, or each square angstrom of buried hydrophobic surface area—contributes equally to stability regardless of its unique structural context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, D. J., and Leo, A. J., 1987, Extension of the fragment method to calculate amino acid zwitterion and side chain partition coefficients, Proteins 2:130–152.

    PubMed  CAS  Google Scholar 

  • Ackers, G. K., and Smith, F. R., 1985, Effects of site-specific amino acid modification on protein interactions and biological function, Annu. Rev. Biachem. 54:597–629.

    CAS  Google Scholar 

  • Ahern, T. J., Casal, J. I., Petsko, J. A., and Klibanov, A. M., 1987, Control of oligomeric enzyme thermostability by protein engineering, Proc. Natl. Acad. Sci. U.S.A. 84:675–679.

    PubMed  CAS  Google Scholar 

  • Alber, T., and Wozniak, J. A., 1985, A genetic screen for mutations that increase the thermal stability of phage T4 lysozyme, Proc. Natl. Acad. Sci. U.S.A. 82:747–750.

    PubMed  CAS  Google Scholar 

  • Alber, T., Grütter, M. G., Gray, T. M., Wozniak, J. A., Weaver, L. H., Chen, B.-L., Baker, E. N., and Matthews, B. W., 1986, Structure and stability of mutant lysozymes from bacteriophage T4, in: UCLA Symposia on Molecular and Cellular Biology, New Series, Volume 39, Protein Structure Folding and Design (D. L. Oxender, ed.), Alan R. Liss, New York, pp. 307–318.

    Google Scholar 

  • Alber, T., Sun, D.-P., Nye, J. A., Muchmore, D. C., and Matthews, B. W., 1987a, Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites of low mobility and low solvent accessibility in the folded protein, Biochemistry 26:3754–3758.

    PubMed  CAS  Google Scholar 

  • Alber, T., Sun, D.-P., Wilson, K., Wozniak, J. A., Cook, S. P., and Matthews, B. W., 1987b, Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme, Nature 330:41–46.

    PubMed  CAS  Google Scholar 

  • Alber, T., Bell, J. A., Sun, D.-P., Nicholson, H., Wozniak, J. A., Cook, S. P., and Matthews, B. W., 1988, Replacements of Pro 86 in phage T4 lysozyme extend an α-helix but do not alter protein stability, Science 239:631–635.

    PubMed  CAS  Google Scholar 

  • Amir, D., and Haas, E., 1987, Estimation of intramolecular distance distributions in bovine pancreatic trypsin inhibitor by site-specific labeling and nonradiative excitation energy-transfer measurements, Biochemistry 26:2162–2175.

    PubMed  CAS  Google Scholar 

  • Arridge, G. C., and Cannon, C. G., 1963, Calculation of the CONH dipole contribution to lattice energies of amides, polyamides, and polypeptides, Proc. R. Soc. Lond. [A] 278:91–109.

    Google Scholar 

  • Aune, K. C., Salahuddin, A., Zarlengo, M. H., and Tanford, C., 1967, Evidence for residual structure in acid and heat-denatured proteins, J. Biol. Chem. 242:4486–4489.

    PubMed  CAS  Google Scholar 

  • Baker, E. N., and Hubbard, R. E., 1984, Hydrogen bonding in globular proteins, Prog. Biophys. Mol. Biol. 44: 97–179.

    PubMed  CAS  Google Scholar 

  • Baldwin, R. L., 1986, Temperature dependence of the hydrophobic interaction in protein folding, Proc. Natl. Acad. Sci. U.S.A. 83:8069–8072.

    PubMed  CAS  Google Scholar 

  • Baldwin, R. L., and Eisenberg, D., 1987, Protein stability, in: Protein Engineering (D. L. Oxender and C. F. Fox, eds.), Alan R. Liss, New York, pp. 127–148.

    Google Scholar 

  • Barksdale, A. D., and Stuehr, J. E., 1971, Kinetics of the helix-coil transition in aqueous poly(-glutamic acid), J. Am. Chem. Soc. 94:3334–3338.

    Google Scholar 

  • Barlow, D. J., and Thornton, J. M., 1983, Ion-pairs in proteins, J. Mol. Biol. 168:867–885.

    PubMed  CAS  Google Scholar 

  • Barlow, D. J., and Thornton, J. M., 1986, The distribution of charged groups in proteins, Biopolymers 25: 1717–1733.

    PubMed  CAS  Google Scholar 

  • Beasty, A. M., Hurle, M. R., Manz, J. T., Stackhouse, T., Onuffer, J. J., and Matthews, C. R., 1986, Effects of the Phe 22 to Leu, Glu 49 to Met, Gly 234 to Asp, and Gly 234 to Lys mutations on the folding and stability of the α-subunit of tryptophan synthase from Escherichia coli, Biochemistry 25:2965–2974.

    PubMed  CAS  Google Scholar 

  • Beasty, A. M., Hurle, M., Manz, J. T., Stackhouse, T., and Matthews, C. R., 1987, Mutagenesis as a probe of protein folding and stability in: Protein Engineering (D. L. Oxender and C. F. Fox, eds.), Alan R. Liss, New York, pp. 91–102.

    Google Scholar 

  • Becktel, W. J., and Schellman, J. A., 1987, Protein stability curves, Biopolymers 26:1859–1877.

    PubMed  CAS  Google Scholar 

  • Bello, J., 1977, Stability of protein conformation: Internal packing and enthalpy of fusion of model compounds, J. Theor. Biol. 68: 139–142.

    PubMed  CAS  Google Scholar 

  • Bello, J., 1978, Tight packing of protein cores and interfaces, Im. J. Peptides 12:38–41.

    CAS  Google Scholar 

  • Bierzynski, A., and Baldwin, R. L., 1982, Local secondary structure in ribonuclease A denatured by guanidine-Hcl near 1°C, J. Mol. Biol. 162:173–186.

    PubMed  CAS  Google Scholar 

  • Bierzynski, A., Kim, P. S., and Baldwin, R. L., 1982, A salt bridge stabilizes the helix formed by isolated C-peptide of RNAse A, Proc. Natl. Acad. Sci. U.S.A. 79:2470–2474.

    PubMed  CAS  Google Scholar 

  • Blagdon, D. E., and Goodman, M., 1975, Mechanisms of protein and polypeptide helix initiation, Biopolymers 14:241–245.

    PubMed  CAS  Google Scholar 

  • Brandts, J. F., Oliveira, R. J., and Westort, C., 1970, Thermodynamics of protein denaturation. Effect of pressure on the denaturation of ribonuclease A, Biochemistry 9: 1038–1048.

    PubMed  CAS  Google Scholar 

  • Brant, D. A., and Flory, P. J., 1965, The role of dipole interactions in determining polypeptide configurations, J. Am. Chem. Soc. 87:663–664.

    CAS  Google Scholar 

  • Brown, J. E., and Klee, W. A., 1971, Helix-coil transition of the isolated amino terminus of ribonuclease, Biochemistry 10:470–476.

    PubMed  CAS  Google Scholar 

  • Brown, L. R., DeMarco, A., Richarz, R., Wagner, G., and Wüthrich, K., 1978, The influence of a single salt bridge on static and dynamic features of the globular solution conformation of the bovine pancreatic trypsin inhibitor, Eur. J. Biochem. 88:87–95.

    PubMed  CAS  Google Scholar 

  • Bryan, P. N., Rollence, M. L., Pantoliano, M. W., Wood, J., Finzel, B. C., Gilliland, G. L., Howard, A. J., and Poulos, T. L., 1986, Proteases of enhanced thermostability: Characterization of a thermostable variant of subtilisin, Proteins 1:326–334.

    PubMed  CAS  Google Scholar 

  • Bundi, A., and Wüthrich, K., 1979, Use of amide 1H-NMR titration shifts for studies of polypeptide conformation, Biopolymers 18:299–311.

    CAS  Google Scholar 

  • Burley, S. K., and Petsko, G. A., 1985, Aromatic-aromatic interaction: A mechanism of protein structure stabilization, Science 229:23–28.

    PubMed  CAS  Google Scholar 

  • Burley, S. K., and Petsko, G. A., 1988, Weakly polar interactions in proteins, Adv. Protein Chem. 39:125–189.

    PubMed  CAS  Google Scholar 

  • Chazin, W. J., Goldenberg, D. P., Creighton, T. E., and Wüthrich, K., 1985, Comparative studies of conformation and internal mobility in native and circular basic pancreatic trypsin inhibitor by 1H nuclear magnetic resonance in solution, Eur. J. Biochem. 152:429–437.

    PubMed  CAS  Google Scholar 

  • Chothia, C., 1975, Structural invariants in protein folding, Nature 254:304–308.

    PubMed  CAS  Google Scholar 

  • Chothia, C., 1976, The nature of the accessible and buried surfaces in proteins, J. Mol. Biol. 105:1–14.

    PubMed  CAS  Google Scholar 

  • Chothia, C. 1984, Principles that determine the structure of proteins, Annu. Rev. Biochem. 53:537–572.

    PubMed  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1974, Conformational parameters for amino acids in helical, ß-sheet, and random coil regions calculated for proteins, Biochemistry 13:211–222.

    PubMed  CAS  Google Scholar 

  • Cohen, F. E., and Kuntz, I. D., 1987, Prediction of the three-dimensional structure of human growth hormone, Proteins 2:162–167.

    PubMed  CAS  Google Scholar 

  • Cohen, F. E., and Sternberg, M. J. E., 1980, On the use of chemically derived distance constraints in the prediction of protein structure with myoglobin as an example, J. Mol. Biol. 137:9–22.

    PubMed  CAS  Google Scholar 

  • Cohen, F. E., Abarbanel, R. M., Kuntz, I. D., and Fletterick, R. J., 1986, Turn prediction in proteins using a pattern-matching approach, Bioehemistry 25:266–275.

    CAS  Google Scholar 

  • Connolly, M. L., 1986a, Shape complementarity at the hemoglobin α:-1-ß-1 subunit interface, Biopolymers 25: 1229–1247.

    PubMed  CAS  Google Scholar 

  • Connolly, M. L., 1986b, Atomic size packing defects in proteins, Int. J. Peptides 28:360–363.

    CAS  Google Scholar 

  • Creighton, T. E., 1983a, An empirical approach to protein conformation, stability and flexibility, Biopolymers 22:49–58.

    PubMed  CAS  Google Scholar 

  • Creighton, T. E., 1983b, Proteins, W. H. Freeman, New York.

    Google Scholar 

  • Creighton, T. E., 1985, The problem of how and why proteins adopt folded conformations, J. Phys. Chem. 89: 2452–2459.

    CAS  Google Scholar 

  • Creighton, T. E., and Goldenberg, D. P., 1984, Kinetic role of a metastable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor, J. Mol. Biol. 179:497–526.

    PubMed  CAS  Google Scholar 

  • Cronin, C. N., Malcolm, B. A., and Kirsh, J. F., 1987, Reversal of substrate specificity by site directed mutagenesis of aspartate amino transferase, J. Am. Chem. Soc. 109:2222–2223.

    CAS  Google Scholar 

  • Dill, K. A., 1985, Theory for the folding and stability of globular proteins, Bioehemistry 24:1501–1509.

    CAS  Google Scholar 

  • Dill, K. A., 1987, The stabilities of globular proteins, in: Protein Engineering (D. L. Oxender and C. F. Fox, eds.), Alan R. Liss, New York, pp. 187–192.

    Google Scholar 

  • Dlott, D. D., Frauenfelder, H., Langer, P., Roder, H., and Dilorio, E. E., 1983, Nanosecond flash photolysis study of carbon monoxide binding to the ß chain of hemoglobin Zurich [ß63(E7)His to Arg], Proc. Natl. Acad. Sci. U.S.A. 80:6239–6243.

    PubMed  CAS  Google Scholar 

  • Dyson, H. J., Cross, K. J., Houghten, R. A., Wilson, I. A., Wright, P. E., and Lerner, R. A., 1985, The immunodominant site of a synthetic immunogen has a conformational preference in water for a type-II reverse turn, Nature 318:480–483.

    PubMed  CAS  Google Scholar 

  • Eisenberg, D., and McLachlan, 1986, Solvation energy in protein folding and binding, Nature 319:199–203.

    PubMed  CAS  Google Scholar 

  • Evans, P. A., Dobson, C. M., Kautz, R. A., Hatfull, G., and Fox, R. O., 1987, Proline isomerism in staphylococcal nuclease characterized by NMR and site-directed mutagenesis, Nature 329:266–268.

    PubMed  CAS  Google Scholar 

  • Fermi, G., and Perutz, M. F., 1981, Haemoglobin and Myoglobin, Clarenden Press, Oxford.

    Google Scholar 

  • Fersht, A. R., 1971, Conformational equilibria and the salt bridge in chymotrypsin, Cold Spring Harbor Symp. Quant. Biol. 36:71–73.

    CAS  Google Scholar 

  • Fersht, A. R., 1987, The hydrogen bond in molecular recognition, Trends Biochem. Sci. 12:301–304.

    CAS  Google Scholar 

  • Fersht, A. R., Shi, J.-P., Knill-Jones, J., Lowe, D. M., Wilkinson, A. J., Blow, D. M., Brick, P., Carter, P., Waye, M. M. Y., and Winter, G., 1985, Hydrogen bonding and biological specificity analyzed by protein engineering, Nature 314:235–238.

    PubMed  CAS  Google Scholar 

  • Flanagan, M. A., Garcia-Moreno, E. B., Friend, S. H., Feldmann, R. J., Scouloudi, H., and Gurd, F. R. N., 1983, Contributions of individual amino acid residues to the structural stability of cetacean myoglobins, Biochemistry 22:6027–6037.

    PubMed  CAS  Google Scholar 

  • Garcia-Moreno, E. G., Chen, L. X., March, K. L., Gurd, R. S., and Gurd, F. R. N., 1985, Electrostatic interactions in sperm whale myoglobin, J. Biol. Chem. 260:14070–14082.

    PubMed  CAS  Google Scholar 

  • Gilson, M. K., and Honig, B. H., 1987, Calculation of electrostatic potentials in an enzyme active site, Nature 330:84–86.

    PubMed  CAS  Google Scholar 

  • Gilson, M. K., Rashin, A., Fine, R., and Honig, B., 1985, On the calculation of electrostatic interactions in proteins, J. Mol. Biol. 183:503–516.

    Google Scholar 

  • Glushko, V., Lawson, P. J., and Gurd, F. R. N., 1972, Conformational states of bovine pancreatic ribonuclease A observed by normal and partially relaxed carbon-13 nuclear magnetic resonance, J. Biol. Chem. 247: 3176–3185.

    PubMed  CAS  Google Scholar 

  • Go, M., and Miyazawa, S., 1980, Relationship between mutability, polarity and exteriority of amino acid residues in protein evolution, Inf. J. Peptides 15:211–224.

    CAS  Google Scholar 

  • Go, N., 1975, Theory of reversible denaturation of globular proteins, Inf. J. Peptides 7:313–323.

    CAS  Google Scholar 

  • Goldenberg, D. P., 1985, Dissecting the roles of individual interactions in protein stability: Lessons from a circularized protein, J. Cell Biochem. 29:321–335.

    PubMed  CAS  Google Scholar 

  • Goldenberg, D. P., 1988, Genetic studies of protein stability and mechanisms of folding, Annu. Rev. Biophys. Biophys. Chem. 17: 481–507.

    PubMed  CAS  Google Scholar 

  • Goldenberg, D. P., and Creighton, T. E., 1984, Folding pathway of a circular form of bovine pancreatic trypsin inhibitor, J. Mol. Biol. 179:527–545.

    PubMed  CAS  Google Scholar 

  • Goldenberg, D. P., and Creighton, T. E., 1985, Energetics of protein structure and folding, Biopolymers 24:167–182.

    PubMed  CAS  Google Scholar 

  • Gray, T. M., and Matthews, B. W., 1987, Structural analysis of the temperature-sensitive mutant of bacteriophage T4 lysozyme, glycine 156 to aspartic acid, J. Biol. Chem. 262:16858–16864.

    PubMed  CAS  Google Scholar 

  • Grütter, M. G., and Matthews, B. W., 1982, Amino acid substitutions far from the active site of bacteriophage T4 lysozyme reduce catalytic activity and suggest that the C-terminal lobe of the enzyme participates in substrate binding, J. Mol. Biol. 154:525–535.

    PubMed  Google Scholar 

  • Grütter, M. G., Hawkes, R. B., and Matthews, B. W., 1979, Molecularbasis of thermostability in the lysozyme of bacteriophage T4, Nature 277:667–668.

    PubMed  Google Scholar 

  • Grütter, M. G., Weaver, L. H., Gray, T. M., and Matthews, B. W., 1983, Structure, function, and evolution of the lysozyme from bacteriophage T4 lysozyme, in: Bacteriophage T4 (C. K. Matthews, E. M. Kutter, G. Mosig, and P. M. Berget, eds.), American Society for Microbiology, Washington, pp. 356–360.

    Google Scholar 

  • Grütter, M. G., Gray, T. M., Weaver, L. H., Alber, T., Wilson, K., and Matthews, B. W., 1987, Structural studies of mutants of the lysozyme of bacteriophage T4: The temperature-sensitive mutant protein Thr 157 to Ile, J. Mol. Biol. 197:315–329.

    PubMed  Google Scholar 

  • Haas, E., and Amir, D., 1987, BPTI has a compact structure when the disulfide bonds are reduced, J. Cell. Bioehem. 11C:214.

    Google Scholar 

  • Hampsey, D. M., Das, G., and Sherman, F., 1986, Amino acid replacements in yeast iso-1-cytochrome c: Comparisons with the phylogenetic series and the tertiary structure of related cytochromes c, J. Biol. Chem. 261:3259–3271.

    PubMed  CAS  Google Scholar 

  • Hawkes, R., Grütter, M. G., and Schellman, J., 1984, Thermodynamic stability and point mutations of bacteriophage T4 lysozyme, J. Mol. Biol. 175:195–212.

    PubMed  CAS  Google Scholar 

  • Hecht, M. H., and Sauer, R. T., 1985, Phage λ repressor revertants, J. Mol. Biol. 186:53–63.

    PubMed  CAS  Google Scholar 

  • Hecht, M. H., Nelson, H. C. M., and Sauer, R. T., 1983, Mutations in λ repressor’s amino-terminal domain: Implications for protein stability and DNA binding, Proc. Natl. Acad. Sci. U.S.A. 80:2676–2680.

    PubMed  CAS  Google Scholar 

  • Hecht, M. H., Sturtevant, J. M., and Sauer, R. T., 1984a, Effect of amino acid replacements on the thermal stability of the NH2-terminal domain of phage λ repressor, Proc. Nat. Acad. Sci. U.S.A. 81:5685–5689.

    CAS  Google Scholar 

  • Hecht, M. H., Sturtevant, J. M., and Sauer, R. T., 1984b, Stabilization of λ repressor against thermal denaturation by site-directed Gly to Ala changes in α-helix three, Proc. Nat. Acad. Sei. U.S.A. 81:5685–5689.

    CAS  Google Scholar 

  • Hecht, M. H., Hehir, K. M., Nelson, H. C. M., Sturtevant, J. M., and Sauer, R., T., 1985, Increasing and decreasing protein stability: Effects of revertant substitutions on the thermal denaturation of phage λ repressor, J. Cell. Biochem. 29:217–224.

    PubMed  CAS  Google Scholar 

  • Hendrix, J. D., and Welker, N. E., 1985, Isolation of a Baeillus stearothermophilus mutant exhibiting increased thermostability in its restriction endonuclease, J. Bacteriol. 162:682–692.

    PubMed  CAS  Google Scholar 

  • Hol, W. G. J., van Duijnen, P. T., and Berendsen, H. J. C., 1978, The α-helix dipole and the properties of proteins, Nature 273:443–446.

    PubMed  CAS  Google Scholar 

  • Hol, W. G. I., Halie, L. M., and Sander, C., 1981, Dipoles of the α-helix and ß-sheet: Their role in protein folding, Nature 294:532–536.

    PubMed  CAS  Google Scholar 

  • Howell, E. E., Villafranca, I. E., Warren, M. S., Oatley, S. I., and Kraut, I., 1986, Functional role of aspartic acid-27 in dihydrofolate reductase revealed by mutagenesis, Science 231:1123–1128.

    PubMed  CAS  Google Scholar 

  • Hurle, M. R., and Matthews, C. R., 1987, Proline isomerization and the slow folding reactions of the α subunit of tryptophan synthase from Escherichia coli, Biochim. Biophys. Acta 913:179–184.

    PubMed  CAS  Google Scholar 

  • Hurle, M. R., Tweedy, N. B., and Matthews, C. R., 1986, Synergism in folding of a double mutant of the α subunit of tryptophan synthase, Biochemistry 25:6356–6360.

    PubMed  CAS  Google Scholar 

  • Hurle, M. R., Matthews, C. R., Cohen, F. E., Kuntz, I. D., Toumadje, A., and Johnson, W. C., Jr., 1987, Prediction of the tertiary structure of the α-subunit of tryptophan synthase, Proteins 2:210–224.

    PubMed  CAS  Google Scholar 

  • Hvidt, A., 1975, A discussion of pressure-volume effects in aqueous protein solutions, J. Theor. Biol. 50:245–252.

    PubMed  CAS  Google Scholar 

  • Ihara, S., Ooi, T., and Takahashi, S., 1982, Effects of salts on the nonequivalent stability of the α-helices of isomeric block copolypeptides, Biopolymers 21:131–145.

    CAS  Google Scholar 

  • Illuminati, G., and Mandolini, L., 1981, Ring closure reactions of bifunctional chain molecules, Acc. Chem. Res. 14:95–102.

    CAS  Google Scholar 

  • Imanaka, T., Shibazaki, M., and Takagi, M., 1986, A new way of enhancing the thermostability of proteins, Nature 324:695–697.

    PubMed  CAS  Google Scholar 

  • Janin, J., Wodak, S., Levitt, M., and Maigret, B., 1978, Conformation of amino acid side-chains in proteins, J. Mol. Biol. 125:357–386.

    PubMed  CAS  Google Scholar 

  • Johnson, R. E., Adams, P., and Rupley, J. A., 1978, Thermodynamics of protein crosslinks, Biochemistry 17: 1479–1484.

    PubMed  CAS  Google Scholar 

  • Kauzmann, W., 1959, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14: 1–63.

    PubMed  CAS  Google Scholar 

  • Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., and Phillips, D. C., 1958, A three-dimensional model of the myoglobin molecule obtained by x-ray analysis, Nature 181:662–666.

    PubMed  CAS  Google Scholar 

  • Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G., Davies, D. R., Phillips, D. C., and Shore, V. C., 1960, Structure of myoglobin, Nature 185:422–437.

    PubMed  CAS  Google Scholar 

  • Kendrew, J. C., Watson, H. C., Strandberg, B. E., Dickerson, R. E., Phillips, D. C., and Shore, V. C., 1961, A partial determination by x-ray methods, and its correlation with chemical data, Nature 190:666–670.

    PubMed  CAS  Google Scholar 

  • Kim, P. S., and Baldwin, R. L., 1982, Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding, Annu. Rev. Biochem. 51:459–489.

    PubMed  CAS  Google Scholar 

  • Kim, P. S., and Baldwin, R. L., 1984, A helix stop signal in the isolated S-peptide of ribonuclease A, Nature 307:329–334.

    PubMed  CAS  Google Scholar 

  • Klapper, M. H., 1971, The nature of the protein interior, Biochim. Biophys. Acta 229:557–566.

    PubMed  CAS  Google Scholar 

  • Klotz, I. M., and Franzen, J. S., 1962, Hydrogen bonds between model peptide groups in solution, J. Am. Chem. Soc. 84:3461–3466.

    CAS  Google Scholar 

  • Kyte, J., and Doolittle, R. F., 1982, A simple method-for displaying the hydropathic character of a protein, J. Mol. Biol. 157: 105–132.

    PubMed  CAS  Google Scholar 

  • Labhart, A. M., 1982, Secondary structure in ribonuclease I. Equilibrium folding transitions seen by amide circular dichroism, J. Mol. Biol. 157:331–355.

    Google Scholar 

  • Lawrence, C., Auger, I., and Mannella, C., 1987, Distribution of accessible surface areas of amino acids in globular proteins, Proteins 2:153–167.

    PubMed  CAS  Google Scholar 

  • Lee, B., 1985, The physical origin of the low solubility of nonpolar solutes in water, Biopolymers 24:813–823.

    PubMed  CAS  Google Scholar 

  • Lesk, A. M., and Chothia, C., 1980, Solvent accessibility, protein surfaces, and protein folding, Biophys. J. 32: 35–37.

    PubMed  CAS  Google Scholar 

  • Levitt, M., and Warshel, A., 1975, Computer simulation of protein folding, Nature 253:694–698.

    PubMed  CAS  Google Scholar 

  • Lewis, P. N., Go, N., Go, M., Kotelchuck, D., and Scheraga, H. A., 1970, Helix probability profiles of denatured proteins and their correlation with native structures, Proc. Nat. Acad. Sci. U.S.A. 65:810–815.

    CAS  Google Scholar 

  • Liao, H., McKenzie, T., and Hageman, R., 1986, Isolation of a thermostable enzyme variant by cloning and selection in a thermophile, Proc. Natl. Acad. Sci. U.S.A. 83:576–580.

    PubMed  CAS  Google Scholar 

  • Lin, S. H., Konishi, Y., Denton, M. E., and Scheraga, H. A., 1984, Influence of an extrinsic crosslink on the folding pathway of ribonuclease A. Conformational and thermodynamic analysis of cross-linked (lysine7-lysine41 )-ribonuclease A, Biochemistry 23:5504–5512.

    PubMed  CAS  Google Scholar 

  • Lin, S. H., Konishi, Y., Nall, B. T., and Scheraga, H. A., 1985, Influence of an extrinsic cross-link on the folding pathway of ribonuclease A. Kinetics of folding-unfolding, Biochemistry 24:2680–2686.

    PubMed  CAS  Google Scholar 

  • Loftus, D., Gbenle, G. O., Kim,. P. S., and Baldwin, R. L., 1986, Effects of denaturants on amide protein exchange rates: A test for structures in protein fragments and folding intermediates, Biochemistry 25: 1428–1436.

    PubMed  CAS  Google Scholar 

  • Luisi, B. F., and Nagai, K., 1986, Crystallographic analysis of mutant haemoglobins made in Escherichia coli, Nature 320:555–556.

    PubMed  CAS  Google Scholar 

  • Macgregor, R. B., and Weber, G., 1986, Estimation of the polarity of the protein interior by optical spectroscopy, Nature 319:70–73.

    PubMed  CAS  Google Scholar 

  • Marqusee, S., and Baldwin, R. L., 1987, Helix stabilization by Glu-Lys salt bridges in short peptides of de novo design, Proc. Natl. Acad. Sci. U.S.A. 84:8898–8902.

    PubMed  CAS  Google Scholar 

  • Matsumura, M., and Aiba, S., 1985, Screening for thermostable mutant of kanamycin nucleotidyl transferase by the use of a transformation system for a thermophile, Bacillus stearothermophilus, J. Biol. Chem. 260: 15298–15303.

    CAS  Google Scholar 

  • Matsumura, M., Yasumura, S., and Aiba, S., 1986, Cumulative effect of intragenic amino acid replacements on the thermostability of a protein, Nature 323:356–358.

    PubMed  CAS  Google Scholar 

  • Matsumura, M., Yahanda, S., and Aiba, S., 1988, Site-directed mutagenesis: Role of tyrosine 80 in thermal stabilization of kanamycin nucleotidyltransferase, Eur. J. Biochem. 171:715–720.

    PubMed  CAS  Google Scholar 

  • Matthew, J. B., 1985, Electrostatic effects in proteins, Annu. Rev. Biophys. Biophys. Chem. 14:387–417.

    PubMed  CAS  Google Scholar 

  • Matthews, B. W., 1987, Genetic and structural analysis of the protein stability problem, Biochemistry 26:6885–6888.

    PubMed  CAS  Google Scholar 

  • Matthews, B. W., Nicholson, H., and Becktel, W. J., 1987, Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding, Proc. Natl. Acad. Sci. U.S.A. 84:6663–6667.

    PubMed  CAS  Google Scholar 

  • Matthews, C. R., and Hurle, M. R., 1987, Mutant sequences as probes of protein folding mechanisms, Bioessays 6:254–257.

    PubMed  CAS  Google Scholar 

  • Matthews, C. R., and Westmoreland, D. G., 1975, Nuclear magnetic resonance studies of residual structure in thermally unfolded ribonuclease A, Biochemistry 14:4532–4538.

    PubMed  CAS  Google Scholar 

  • Matthews, C. R., Crisanti, M. M., Gepner, G. L., Velicelebi, G., and Sturtevant, J. M., 1980, Effect of single amino acid substitutions on the thermal stability of the α subunit of tryptophan synthase, Biochemistry 19: 1290–1293.

    PubMed  CAS  Google Scholar 

  • Matthews, C. R., Crisanti, M. M., Manz, J. T., and Gepner, G. L., 1983, Effect of a single amino acid substitution on the folding of the α subunit of tryptophan synthase, Biochemistry 22:1445–1452.

    PubMed  CAS  Google Scholar 

  • Miller, J. H., 1984, Genetic studies of the lac repressor XII. Amino acid replacements in the DNA binding domain of the Escherichia coli lac repressor, J. Mol. Biol. 180:205–212.

    PubMed  CAS  Google Scholar 

  • Miller, J. H., and Schmeissner, V., 1979, Genetic studies of the lac repressor X. Analysis of missense mutations in the lacl gene, J. Mol. Biol. 131:223–248.

    PubMed  CAS  Google Scholar 

  • Miller, J. H., Coulondre, C., Hofer, M., Schmeissner, V., Sommer, H., Schmitz, A., and Lu, P., 1979, Genetic studies of the lac repressor IX. Generation of altered proteins by the suppression of nonsense mutations, J. Mol. Biol. 131:191–222.

    PubMed  CAS  Google Scholar 

  • Miller, S., Lesk, A. M., Janin, J., and Chothia, C., 1987, The accessible surface area and stability of oligomeric proteins, Nature 328:834–836.

    PubMed  CAS  Google Scholar 

  • Mitchinson. C., and Baldwin. R. L., 1986, The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of S-peptide analogues with enhanced helical stability, Proteins 1:23–33.

    PubMed  CAS  Google Scholar 

  • Moult, J., and James, M. N. G., 1986, An algorithm for determining the conformation of polypeptide segments in proteins by systematic search, Proteins 1: 146–163.

    PubMed  CAS  Google Scholar 

  • Mutter, M., 1977, Macrocyclization equilibria of polypeptides, J. Am. Chem. Soc. 99:8307–8314.

    CAS  Google Scholar 

  • Nagai, K., Luisi, B., Shih, D., Miyazaki, G., Imai, K., Poyart, C., DeYoung, A., Kwiatkowski, L., Noble, R. W., Lin, S.-H., and Yu, N.-T., 1987, Distal residues in the oxygen binding site of haemoglobin studied by protein engineering, Nature 329:858–860.

    PubMed  CAS  Google Scholar 

  • Narayana, S. V. L., and Argos, P., 1984, Residue contacts in protein structures and implications for protein folding, Int. J. Peptides 24:25–39.

    CAS  Google Scholar 

  • Nemethy, G., Leach, S. J., and Scheraga, H. A., 1966, The influence of amino acid side chains on the free energy of helix-coil transitions, J. Phys. Chem. 70:998–1004.

    CAS  Google Scholar 

  • Novotny, J., Bruccoleri, R., and Karplus, M., 1984, An analysis of incorrectly folded protein models, J. Mol. Biol. 177:787–818.

    PubMed  CAS  Google Scholar 

  • Nozaki, Y., and Tanford, C., 1971, The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions, J. Biol. Chem. 246:2211–2217.

    PubMed  CAS  Google Scholar 

  • Pabo, C. O., and Suchanek, E. G., 1986, Computer-aided model-building strategies for protein design, Biochemistry 25:5987–5991.

    PubMed  CAS  Google Scholar 

  • Pace, C. N., 1975, The stability of globular proteins, CRC Crit. Rev. Biochem. 3:1–43.

    PubMed  CAS  Google Scholar 

  • Page, M. I., 1984, The energetics and specificity of enzyme-substrate interactions, in: The Chemistry of Enzyme Action (M. I. Page, ed.), Elsevier, Amsterdam, pp. 1–54.

    Google Scholar 

  • Page, M. I., and Jencks, W. P., 1971, Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect, Proc. Natl. Acad. Sci. U.S.A. 68:1678–1683.

    PubMed  CAS  Google Scholar 

  • Pakula, A. A., Young, V. B., and Sauer, R. T., 1986, Bacteriophage λ cro mutations: Effects on activity and intracellular degradation, Proc. Natl. Acad. Sci. U.S.A. 83:8829–8833

    PubMed  CAS  Google Scholar 

  • Pantoliano, M. W., Ladner, R. C., Bryan, P. N., Rollence, M. L., Wood, J. F., and Poulos, T. L., 1987, Protein engineering of subtilisin BPN’: Enhanced stabilization through the introduction of two cysteines to form a disulfide bond, Biochemistry 26:2077–2082.

    PubMed  CAS  Google Scholar 

  • Perry, K. M., Onuffer, J. J., Touchette, N. A., Herndon, C. S., Gittelman, M. S., Matthews, C. R., Chan, J.T., Mayer, R. J., Taira, K., Benkovic, S. J., Howell, E. E., and Kraut, J., 1987, Effect of single amino acid replacements on the folding and stability of dihydrofolate reductase from Escherichia coli, Biochemistry 26:2674–2682.

    PubMed  CAS  Google Scholar 

  • Perry, L. J., and Wetzel, R., 1984, Disulfide bond engineered into T4 lysozyme: Stabilization of the protein toward thermal inactivation, Science 226:555–557.

    PubMed  CAS  Google Scholar 

  • Perutz, M. F., 1964, The hemoglobin molecule, Sci. Am. 211(5):64–76.

    PubMed  CAS  Google Scholar 

  • Perutz, M. F., 1978, Electrostatic effects in proteins, Science 201:1187–1191.

    PubMed  CAS  Google Scholar 

  • Perutz, M. F., and Lehmann, H., 1968, Molecular pathology of human haemoglobin, Nature 219:902–909.

    PubMed  CAS  Google Scholar 

  • Perutz, M. F., and Raidt, H., 1975, Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2, Nature 255:256–259.

    PubMed  CAS  Google Scholar 

  • Perutz, M. F., Kendrew, J. C., and Watson, H. C., 1965, Structure and function of haemoglobin 2. Some relations between polypeptide chain configuration and amino acid sequence, J. Mol. Biol. 13:669–678.

    CAS  Google Scholar 

  • Petsko, G. A., and Ringe, D., 1984, Fluctuations in protein structure from X-ray diffraction, Annu. Rev. Biophys. Bioeng. 13:331–371.

    PubMed  CAS  Google Scholar 

  • Pflugrath, J. W., and Quiocho, F. A., 1985, Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds, Nature 341:257–260.

    Google Scholar 

  • Ponder, J. W., and Richards, 1987, Tertiary templates for proteins, J. Mol. Biol. 193:775–791.

    PubMed  CAS  Google Scholar 

  • Privalov, P. L., 1979, Stability of proteins, Adv. Protein Chem. 33:167–241.

    PubMed  CAS  Google Scholar 

  • Privalov, P. L., Griko, Y. V., Venyaminov, S. Y., and Kutyshenko, V. P., 1986, Cold denaturation of myoglobin, J. Mol. Biol. 190:487–498.

    PubMed  CAS  Google Scholar 

  • Quiocho, F. A., Sack, J. S., and Vyas, N. K., 1987, Stabilization of charges on isolated ionic groups sequestered in proteins by polarized peptide units, Nature 329:561–564.

    PubMed  CAS  Google Scholar 

  • Rashin, A. A., and Honig, B., 1984, On the environment of ionizable groups in globular proteins, J. Mol. Biol. 173:515–521.

    PubMed  CAS  Google Scholar 

  • Rebek, J., Jr., 1987, Model studies in molecular recognition, Science 235:1478–1484.

    PubMed  CAS  Google Scholar 

  • Richards, F. M., 1977, Areas, volumes, packing, and protein structure, Ann. Rev. Biophys. Bioeng. 6:151–176.

    CAS  Google Scholar 

  • Richardson, J. S., 1981, The anatomy and taxonomy of protein structure, Adv. Protein Chem. 34:167–339.

    PubMed  CAS  Google Scholar 

  • Rico, M., Santoro, J., Bermejo, F. J., Herranz, J., Nieto, J. L., Gallego, E., and Jimenez, M. A., 1986, Thermodynamic parameters for the helix-coil thermal transition of ribonuclease S-peptide and derivatives from 1H-NMR data, Biopolymers 25:1031–1053.

    PubMed  CAS  Google Scholar 

  • Roder, H., Wagner, G., and Wüthrich, K., 1985, Individual amide proton exchange rates in thermally unfolded basic pancreatic trypsin inhibitor, Biochemistry 24:7407–7411.

    PubMed  CAS  Google Scholar 

  • Rogers, N. K., and Sternberg, M. J. E., 1984, Electrostatic interactions in globular proteins: Different dielectric models applied to the packing of α-helices, J. Mol. Biol. 174:527–542.

    PubMed  CAS  Google Scholar 

  • Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H., and Zehfus, M. H., 1985, Hydrophobicity of amino-acid residues in globular proteins, Science 229:834–838.

    PubMed  CAS  Google Scholar 

  • Russell, S. T., and Warshel, A., 1985, Calculations of electrostatic energies in proteins, J. Mol. Biol. 185:389–404.

    PubMed  CAS  Google Scholar 

  • Sauer, R. T., Hehir, K., Stearman, R. S., Weiss, M. A., Jeitler-Nilsson, A., Suchanek, E. G., and Pabo, C. O., 1986, An engineered intersubunit disulfide enhances the stability and DNA binding of the N-terminal domain of λ repressor, Biochemistry 25:5992–5998

    PubMed  CAS  Google Scholar 

  • Schellman, J. A., 1955a, The thermodynamics of urea solutions and the heat of formation of the peptide hydrogen bonds, C. R. Lab. Carlsberg Ser. Chim. 29:223–229.

    CAS  Google Scholar 

  • Schellman, J. A., 1955b, The stability of hydrogen-bonded peptide structures in aqueous solution, C. R. Lab. Carlsberg Ser. Chim. 29:230–259.

    CAS  Google Scholar 

  • Schellman, J. A., 1978, Solvent denaturation, Biopolymers 17:1305–1322.

    CAS  Google Scholar 

  • Schellman, J. A., 1987a, The thermodynamic stability of proteins, Annu. Rev. Biophys. Chem. 16:115–137.

    CAS  Google Scholar 

  • Schellman, J. A., 1987b, Selective binding and solvent denaturation, Biopolymers 26:549–559.

    PubMed  CAS  Google Scholar 

  • Schellman, J. A., Lindorfer, M., Hawkes, R., and Grütter, M., 1981, Mutations and protein stability, Biopolymers 20: 1989–1999.

    PubMed  CAS  Google Scholar 

  • Scheraga, H. A., 1978, Use of random copolymers to determine the helix-coil stability constants of the naturally occurring amino acids, Pure Appl. Chem. 50:315–324.

    CAS  Google Scholar 

  • Scheraga, H. A., 1985, Effect of side chain-backbone electrostatic interactions on the stability of α-helices, Proc. Natl. Acad. Sci. U.S.A. 82:5585–5587.

    PubMed  CAS  Google Scholar 

  • Sheridan, R. P., Levy, R. M., and Salemme, F. R., 1982, α-Helix dipole model and electrostatic stabilization of 4-α-helical proteins, Proc. Natl. Acad. Sci. U.S.A. 79:4545–4549.

    PubMed  CAS  Google Scholar 

  • Shoemaker, K. R., Kim, P. S., Brems, D. N., Marqusee, S., York, E. J., Chaiken, I. M., Stewart, J. M., and Baldwin, R. L., 1985, Nature of the charged group effect on the stability of the C-peptide helix, Proc. Natl. Acad. Sci. U.S.A. 82:2349–2353.

    PubMed  CAS  Google Scholar 

  • Shoemaker, K. R., Kim, P. S., York, E. J., Stewart, J. M., and Baldwin, R. L., 1987, Tests of the helix dipole model for stabilization of α-helices, Nature 326:563–567.

    PubMed  CAS  Google Scholar 

  • Shortle, D., and Lin, B., 1985, Genetic analysis of staphylococcal nuclease: Identification of three intragenic “global” suppressors of nucelase-minus mutations, Genetics 110:539–555.

    PubMed  CAS  Google Scholar 

  • Shortle, D., and Meeker, A. K., 1986, Mutant forms of staphylococcal nuclease with altered patterns of guanidine hydrochloride and urea denaturation, Proteins 1:81–89.

    PubMed  CAS  Google Scholar 

  • Smith, J. L., Hendrickson, W. A., Honzatko, R. B., and Sheriff, S., 1986, Structural heterogeneity in protein crystals, Biochemistry 25:5018–5027.

    PubMed  CAS  Google Scholar 

  • Snow, M. E., and Amzel, L. M., 1986, Calculating three-dimensional changes in protein structure due to amino acid substitutions: The variable region of immunoglobulins, Proteins 1:267–279.

    PubMed  CAS  Google Scholar 

  • Springs, B., and Haake, P., 1977, Equilibrium constants for association of guanidinium and ammonium ions with oxyanions, Bioorg. Chem. 6:181–190.

    CAS  Google Scholar 

  • Stahl, N., and Jencks, W. P., 1986, Hydrogen bonding between solutes in aqueous solution, J. Am. Chem. Soc. 108:4196–4205.

    CAS  Google Scholar 

  • States, D. J., Creighton, T. E., Dobson, C. M., and Karplus, M., 1987, Conformations of intermediates in the folding of the pancreatic trypsin inhibitor, J. Mol. Biol. 195:731–739.

    PubMed  CAS  Google Scholar 

  • Sternberg, M. J. E., Hayes, F. R. F., Russell, A. J., Thomas, P. G., and Fersht, A. R., 1987, Prediction of electrostatic effects of engineering of protein charges, Nature 330:86–88.

    PubMed  CAS  Google Scholar 

  • Streisinger, G., Mukai, F., Dreyer, W. J., Miller, B., and Horiuchi, S., 1961, Mutations affecting the lysozyme of phage T4, Cold Spring Harbor Symp. Quant. Biol. 26:25–30.

    PubMed  CAS  Google Scholar 

  • Sturtevant, J. M., 1977, Heat capacity and entropy changes in processes involving proteins, Proc. Natl. Acad. Sci. U.S.A. 74:2236–2240.

    PubMed  CAS  Google Scholar 

  • Sturtevant, J. M., 1987, Biochemical applications of differential scanning calorimetry, Annu. Rev. Phys. Chem. 38:463–488.

    CAS  Google Scholar 

  • Sueki, M., Lee, S., Powers, S. P., Denton, J. B., Konishi, Y., and Scheraga, H. A., 1984, Helix-coil stability constants for the naturally occurring amino acids in water, Macromolecules 17:148–155.

    CAS  Google Scholar 

  • Susi, H., Timasheff, S. N., and Ard, J. S., 1964, Near infrared investigation of inter amide hydrogen bonding in aqueous solution, J. Biol. Chem. 239:3051–3054.

    PubMed  CAS  Google Scholar 

  • Svensson, L. A., Sjölin, L., Gilliland, G. L., Finzel, B. C., and Wlodawer, A., 1986, Multiple conformations of amino acid residues in ribonuclease A, Proteins 1:370–375.

    PubMed  CAS  Google Scholar 

  • Tanford, C., 1954, The association of accetate with ammonium and guanidinium ions, J. Am. Chem. Soc. 76: 945–946.

    CAS  Google Scholar 

  • Tanford, C., 1962, Contribution of hydrophobic interactions to the stability of the globular conformation of proteins, J. Am. Chem. Soc. 84:4240–4247.

    CAS  Google Scholar 

  • Tanford, C., 1968, Protein denaturation, Adv. Protein Chem. 23:121–282.

    PubMed  CAS  Google Scholar 

  • Tanford, C., 1970, Protein denaturation Part C. Theoretical models for the mechanism of denaturation, Adv. Protein Chem. 24:1–95.

    PubMed  CAS  Google Scholar 

  • Tanford, C., 1980, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, John Wiley & Sons, New York.

    Google Scholar 

  • Thomas, P. G., Russell, A. J., and Fersht, A. R., 1985, Tailoring the pH dependence of enzyme catalysis using protein engineering, Nature 318:375–376.

    CAS  Google Scholar 

  • Thornton, J. M., 1982, Electrostatic interactions in proteins, Nature 295:13–14.

    PubMed  CAS  Google Scholar 

  • Ueda, Y., and Go, N., 1976, Theory of large-amplitude conformational fluctuations in native globular proteins, Int. J. Peptides 8:551–558.

    CAS  Google Scholar 

  • Villafranca, J. E., Howell, E. E., Oatley, S. J., Xuong, N.-H., and Kraut, J., 1987, An engineered disulfide bond in dihydrofolate reductase, Biochemistry 26:2182–2189.

    PubMed  CAS  Google Scholar 

  • Wada, A., 1976, The α-helix as an electric macrodipole, Adv. Biophys. 9:1–63.

    CAS  Google Scholar 

  • Wada, A., and Nakamura, H., 1981, Nature of the charge distribution in proteins, Nature 293:757–758.

    PubMed  CAS  Google Scholar 

  • Wagner, G., Kalb, A. J., and Wüthrich, K., 1979, Conformational studies by 1H nuclear magnetic resonance of the basic pancreatic trypsin inhibitor after reduction of the disulfide bond between Cys-14 and Cys-38, Eur. J. Biochem. 95:249–253.

    PubMed  CAS  Google Scholar 

  • Warshel, A., 1987, What about protein polarity? Nature 330:15–16.

    PubMed  CAS  Google Scholar 

  • Warshel, A., and Russell, S. T., 1984, Calculations of electrostatic interactions in biological systems and in solutions, Q. Rev. Biophys. 17:282–422.

    Google Scholar 

  • Weber, P. C., Sheriff, S., Ohlendorf, D. H., Finzel, B. C., and Salemme, F. R., 1985, The 2Å resolution structure of a thermostable ribonuclease A chemically cross-linked between lysine residues 7 and 41, Proc. Natl. Acad. Sci. U.S.A. 82:8473–8477.

    PubMed  CAS  Google Scholar 

  • Wells, J. A., and Powers, D. B., 1986, In vivo formation and stability of engineered disulfide bonds in subtilisin, J. Bioi. Chem. 261:6564–6570.

    CAS  Google Scholar 

  • Wetzel, R., Perry, L. J., Baase, W. A., and Becktel, W. J., 1988, Disulfide bonds and thermal stability in T4 lysozyme, Proc. Natl. Acad. Sci. U.S.A. 85:401–405.

    PubMed  CAS  Google Scholar 

  • Wishnia, A., 1963, The hydrophobic contribution to micelle formation: The solubility of ethane, propane, butane, and pentane in sodium dodecyl sulfate solution, J. Phys. Chem. 67:2079–2082.

    CAS  Google Scholar 

  • Wolfenden, R., Andersson, L., Cullis, P. M., and Southgate, C. C. B., 1981, Affinities of amino acid side chains for solvent water, Biochemistry 20:849–855.

    PubMed  CAS  Google Scholar 

  • Yutani, K., Ogasahara, K., Aoki, K., Kakuno, T., and Sugino, Y., 1984, Effect of amino acid residues on conformational stability in eight mutant proteins variously substituted at a unique position of the trp synthase α-subunit, J. Bioi. Chem. 259:14076–14081.

    CAS  Google Scholar 

  • Yutani, K., Ogasahara, K., Tsujita, T., and Sugino, T., 1987, Dependence of conformational stability on hydrophobicity of the amino acid residue in a series of variant proteins substituted at a unique position of tryptophan synthase α subunit, Proc. Natl. Acad. Sci. U.S.A. 84:4441–4444.

    PubMed  CAS  Google Scholar 

  • Zimm, B. H., and Bragg, J. K., 1959, Theory of the phase transition between helix and random coil in polypeptide chains, J. Chem. Phys. 31:526–535.

    CAS  Google Scholar 

  • Zipp, A., and Kauzmann, W., 1973, Pressure denaturation of metmyoglobin, Biochemistry 12:4217–4228.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Alber, T. (1989). Stabilization Energies of Protein Conformation. In: Fasman, G.D. (eds) Prediction of Protein Structure and the Principles of Protein Conformation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1571-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1571-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8860-2

  • Online ISBN: 978-1-4613-1571-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics