Skip to main content

Abstract

The convergence of several lines of development in chemistry and molecular biology has created major new needs and opportunities for theoretical studies of proteins. The traditional approaches of organic synthesis have been supplemented by methods for automated chemical synthesis and genetic engineering that allow the preparation of a wide variety of polypeptides, specifically altered enzymes, and other complex molecules. The choice of molecules to be synthesis for a given application is increasingly guided by structural information in addition to traditional methods such as chemical intuition and empirical correlation (quantitative structure-activity relationships, or QSAR). X-ray area detectors and new methods in NMR spectroscopy, combined with the improvements in our ability to synthesize and purify samples, are increasingly the rate at which high-resolution structures to proteins are becoming available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, F., and Bigelow, C. C., 1986, Estimation of the stability of globular proteins, Biopolymers 25:1623.

    Article  CAS  Google Scholar 

  • Baldwin, R. L., 1986, Seeding protein folding, Trends Biochem. Sci. 11:6.

    Article  CAS  Google Scholar 

  • Berendsen, H. J. C., 1985, Statistical mechanics and molecular dynamics: The calculation of free energy, in: Molecular Dynamics and Protein Structure (J. Hermans, ed.), University of North Carolina, Chapel Hill, pp. 43–46.

    Google Scholar 

  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak, J. R., 1984, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81:3684.

    Article  CAS  Google Scholar 

  • Berkowitz, M., and McCammon, J. A., 1982, Molecular dynamics with stochastic boundary conditions, Chem. Phys. Lett. 90:215.

    Article  CAS  Google Scholar 

  • Beveridge, D., and Mezei, M., 1985, Free energy simulations: The coupling parameter approach and topographical transition coordinates, in: Molecular Dynamics and Protein Structure (J. Hermans, ed.), University of North Carolina, Chapei Hill, pp. 53–57.

    Google Scholar 

  • Bode, W., and Schwager, P., 1975, The refined crystal structure of bovine ß-trypsin at 1.8 angstroms resolution, J. Mol. Biol. 98:693.

    Article  PubMed  CAS  Google Scholar 

  • Brunger, A. T., Brooks, C. L., and Karplus, M., 1985, Active site dynamics of ribonuclease, Proc. Natl. Acad. Sci. U.S.A. 82:8458.

    Article  PubMed  CAS  Google Scholar 

  • Cantor, C. R., and Schimmel, P. R., 1980, Biophysical Chemistry, W. H. Freeman, San Francisco.

    Google Scholar 

  • Craik, C. S., Largman, C., Fletcher, T., Roczniak, S., Barr, P. J., Fletterick, R., and Rutter, W. J., 1985, Redesigning trypsin: Alteration of substrate specificity, Science 228:291.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, H. L., 1985, A Course in Statistical Mechanics, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Hawkes, R., Grutter, M. G., and Schellman, J., 1984, Thermodynamic stability and point mutations of bacteriophage T4 lysozyme, J. Mol. Biol. 175:195.

    Article  PubMed  CAS  Google Scholar 

  • Hermans, J., Berendsen, H. J. C., van Gunsteren, W. F., and Postma, J. P. M., 1984, A consistent empirical potential for water-protein interactions, Biopolymers 23:1513.

    Article  CAS  Google Scholar 

  • Hockney, R. N., and Eastwood, J. W., 1981, Computer Simulation Using Particles, McGraw-Hill, New York.

    Google Scholar 

  • Jorgensen, W. L., Chandrasekhar, J., Buckner, J. K., and Madura, J. D., 1986, Computer simulations of organic reactions in solution, Ann. N.Y. Acad. Sci. 482:198.

    Article  PubMed  CAS  Google Scholar 

  • Lesk, A. M., and Chothia, C. H., 1986, The response or protein structures to amino-acid sequence changes, Phil. Trans. R. Soc. Lond. A317:345.

    Article  Google Scholar 

  • Lybrand, T. P., Ghosh, I., and McCammon, J. A., 1985, Hydration of chloride and bromide anions: Determination of relative free energy by computer simulation, J. Am. Chem. Soc. 107:7793.

    Article  CAS  Google Scholar 

  • Lybrand, T. P., McCammon, J. A., and Wipff, G., 1986, Theoretical calculation of relative binding affinity in host-guest systems, Proc. Natl. Acad. Sci. U.S.A. 83:833.

    Article  PubMed  CAS  Google Scholar 

  • Lybrand, T. P., Lau, W. F., McCammon, J. A., and Pettitt, B. M., 1987, Molecular dynamics studies on antiviral agents: Thermodynamics of solvation and binding, in: Protein Structure and Design (D. Oxender, ed.), p. 227, Alan R.. Liss, New York.

    Google Scholar 

  • Madura, J. D., Pettitt, B. M., and McCammon, J. A., 1987, Geometric considerations in the calculation of relative free energies of activation, Chem. Phys. Lett. 140:83.

    Article  Google Scholar 

  • Mares-Guia, M., Nelson, D. L., and Rogana, E., 1977, Electronic effects in the interaction of para-substituted benzamidines with trypsin: The involvement of the Ï€-electronic density at the central atom of the substituent in binding, J. Am. Chem. Soc. 99:2331.

    Article  PubMed  CAS  Google Scholar 

  • McCammon, J. A., and Harvey, S. C., 1987, Dynamics of Proteins and Nucleic Acids, Cambridge University Press, Cambridge.

    Google Scholar 

  • McCammon, J. A., Karim, O. A., Lybrand, T. P., and Wong, C. F., 1986, Ionic association in water: From atoms to enzymes, Ann. N.Y. Acad. Sci. 482:210.

    Article  PubMed  CAS  Google Scholar 

  • Pettitt, B. M., and Karplus, M., 1985, The potential of mean force surface for the alanine dipeptide in aqueous solution: A theoretical approach, Chem. Phys. Lett. 121: 194.

    Article  CAS  Google Scholar 

  • Postma, J. P. M., Berendsen, H. J. c., and Haak, J. R., 1982, Thermodynamics of cavity formation in water, Faraday Symp. Chem. Soc. 17:55.

    Article  Google Scholar 

  • Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C., 1977, Numerical integration of Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comp. Phys. 23:327.

    Article  CAS  Google Scholar 

  • Straatsma, T. P., Berendsen, H. J. C., and Postma, J. P. M., 1986, Free energy of hydrophobic hydration: A molecular dynamics study of noble gases in water, J. Chem. Phys. 85:6720.

    Article  CAS  Google Scholar 

  • Tembe, B. L., and McCammon, J. A., 1984, Ligand-receptor interactions, Comput. Chem. 8:281.

    Article  CAS  Google Scholar 

  • Van Holde, K. E., 1971, Physical Biochemistry, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Weiner, P. K., and Kollman, P. A., 1981, AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions, J. Comput. Chem. 2:287.

    Article  CAS  Google Scholar 

  • Wong, C. F., and McCammon, J. A., 1986a, Dynamics and design of enzymes and inhibitors, J. Am. Chem. Soc. 108:3830.

    Article  CAS  Google Scholar 

  • Wong, C. F., and McCammon, J. A., 1986b, Computer simulation and the design of new biological molecules, Isr. J. Chem. 27:211.

    CAS  Google Scholar 

  • Wong, C. F., and McCammon, J. A., 1987, Thermodynamics of enzyme folding and activity: Theory and experiment, in: Structure, Dynamics and Function of Biomolecules (A. Ehrenberg and R. Rigler, eds.), Springer-Verlag, Berlin, pp. 51–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

McCammon, J.A., Wong, C.F., Lybrand, T.P. (1989). Protein Stability and Function. In: Fasman, G.D. (eds) Prediction of Protein Structure and the Principles of Protein Conformation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1571-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1571-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8860-2

  • Online ISBN: 978-1-4613-1571-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics