Skip to main content

Abstract

Proteins are simple and yet quite complex biological macromolecules. They are simple because their building blocks are the 20 naturally occurring amino acids. They are complex because these different amino acid sequences can assume an infinite variety of spatial conformations. Fortunately, there is a link between the simple and the complex in that the protein’s conformation is coded in its amino acid sequence. This was demonstrated by the classical experiments on ribonuclease refolding (Anfinsen et al., 1961) that showed that the information for the protein’s three-dimensional architecture resides in the primary structure alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adman, E. T., Sieker; L. C., and Jensen, L. H., 1976, Structure of Peptococcus aerogenes ferredoxin, J. Biol. Chem. 251:3801–3806.

    PubMed  CAS  Google Scholar 

  • Alter, J. E., Andreatta, R. H., Taylor, G. T., and Scheraga, H. A., 1973, Helix-coil stability constants for the naturally occurring amino acids in water. VIII. Valine parameters from random poly (hydroxypropylglutamine-CO-L-valine) and poly(hydroxybutylglutamine-co-L-valine), Macromolecules 6:564–570.

    CAS  Google Scholar 

  • Anfinsen, C. B., Haber, E., Sela, M., and White, F. H., Jr., 1961, The kinetics of formation of the native ribonuclease during oxidation of the reduced polypeptide chain, Proc. Natl. Acad. Sci. U.S.A. 47:1309–1314.

    PubMed  CAS  Google Scholar 

  • Argos, P., Hanei, M., and Garavito, R. M., 1978, The Chou-Fasman secondary prediction method with an extended data base, FEBS Lett. 93:19–24.

    PubMed  CAS  Google Scholar 

  • Baker, E. N., 1977, Structure of actinidin: Details of the polypeptide chain conformation and active site from an electron density map at 2.8 Å resolution, J. Mol. Biol. 115:263–277.

    PubMed  CAS  Google Scholar 

  • Baker, E. N., 1980, Structure of actinidin, after refinement at 1.7 Å resolution, J. Mol. Biol. 141:441–484.

    PubMed  CAS  Google Scholar 

  • Banks, R. D., Blake, C. C. F., Evans, P. R., Haser, R., Rice, D. W., Hardy, G. W., Merrett, M., and Phillips, A. W., 1979, Sequence, structure and activity of phosphoglycerate kinase: A possible hinge-bending enzyme, Nature 279:773–777.

    PubMed  CAS  Google Scholar 

  • Banner, D. W., Bloomer, A. C., Petsko, G. A., Phillips, D. C., Pegron, C. I., Wilson, I. A., Corran, P. H., Furth, A. J., Milman, J. D., Offord, R. E., Priddle, J. D., and Waley, S. G., 1975, Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 Å resolution using amino acid sequence data, Nature 255:609–614.

    PubMed  CAS  Google Scholar 

  • Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M., 1977, The Protein Data Bank: A computer-based archival file for macromolecular structures, J. Mol. Biol. 112:535–542.

    PubMed  CAS  Google Scholar 

  • Biesecker, G., Harris, J. I., Thierry, J. C., Walker, J. E., and Wonacott, A. J., 1977, Sequence and structure of D-glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus, Nature 266:328–334.

    PubMed  CAS  Google Scholar 

  • Birktoft, J. J., and Blow, D. M., 1970, Structure of crystalline α-chymotrypsin. V. The atomic structure of tosyl-C-chymotrypsin at 2 Å resolution, J. Mol. Biol. 68:187–240.

    Google Scholar 

  • Blake, C. C. F., Geisow, M. J., Oatley, S. J., Rerat, B., and Rerat, C., 1978, Structure of prealbumin: Secondary, tertiary and quarternary interactions determined by Fourier refmement at 1.8 Å, J. Mol. Biol. 121:339–356.

    PubMed  CAS  Google Scholar 

  • Blundell, T., Dodson, G., Hodgkin, D., and Mercola, D., 1972, Insulin: The structure in the crystal and its reflection in chemistry and biology, Adv. Protein Chem. 26:279–402.

    CAS  Google Scholar 

  • Brayer, G. D., Delbaere, L. T. J., and James, M. N. G., 1978, Molecular structure of crystalline Streptomyces griseus protease A at 2.8 Å resolution. II. Molecular conformation, comparison with α-chymotrypsin and active-site geometry, J. Mol. Biol. 124:261–283.

    PubMed  CAS  Google Scholar 

  • Chambers, J. L., and Stroud, R. M., 1977, Difference Fourier refinement of the structure of DIP-trypsin at 1.5 Å with a minicomputer technique, Acta Crystallogr. 833:1824–1837.

    Google Scholar 

  • Chang, M. C., Fredrickson, R. A., Powers, S. P., and Scheraga, H., 1981, Helix-coil stability constants for the naturally occurring amino acids in water. 20. Reinvestigation of valine parameters from random poly[(hydroxypropyl) glutamine-co-L-valine], Macromolecules 14:633–634.

    CAS  Google Scholar 

  • Chou, P. Y., 1979, New approaches to protein structural analysis and conformational predictions, in: Rapport d’Activite Scientifique du CECAM, Orsay, p. 149–216.

    Google Scholar 

  • Chou, P. Y., 1980, Amino acid compositions of four structural classes of proteins, in: Abstracts of Papers, Part I, Second Chemical Congress of the North American Continent, Las Vegas.

    Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1974a, Conformational parameters for amino acids in helical, ß-sheet, and random coil regions calculated from proteins, Biochemistry 13:211–222.

    PubMed  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1974b, Prediction of protein conformation, Biochemistry 13:222–245.

    PubMed  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1975, The conformation of glucagon: Prediction and consequences, Biochemistry 14:2536–2541.

    PubMed  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1977, ß-Turns in proteins. J. Mol. Biol. 115:135–175.

    PubMed  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1978a, Prediction of the secondary structure of proteins from their amino acid sequence, Adv. Enzymol. 47:45–148.

    PubMed  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1978b, Empirical prediction of protein conformation, Annu. Rev. Biochem. 47:251–276.

    PubMed  CAS  Google Scholar 

  • Cunningham, B. A., Wang, J. L., Waxdal, M. J., and Edelman, G. M., 1975, The covalent and three-dimensional structure of concanavalin A. II. Amino acid sequence of cyanogen bromide fragment F3, J. Biol. Chem. 250:1503–1512.

    PubMed  CAS  Google Scholar 

  • Delbaere, L. T. J., Brayer, G. D., and James, M. N. G., 1979, The 2.8 Å resolution structure of Streptomyces griseus protease B and its homology with α-chymotrypsin and Streptomyces griseus protease A, Can. J. Biochem. 57:135–144.

    PubMed  CAS  Google Scholar 

  • Dickerson, R. E., and Geis, I., 1969, The Structure and Function of Proteins, Harper & Row, New York, pp. 34–37.

    Google Scholar 

  • Dijkstra, B. W., Drenth, J., Kalk, K. H., and Vandermaelen, P. J., 1978, Three-dimensional structure and disulfide bond connections in bovine pancreatic phospholipase A2, J. Mol. Biol. 124:53–60.

    PubMed  CAS  Google Scholar 

  • Edmundson, A. B., Ely, K. R., Abola, E. E., Schiffer, M., and Panagiotopoulos, N., 1975, Rotational allomerism and divergent evolution of domains in immunoglobulin light chains, Biochemistry 14:3953–3961.

    CAS  Google Scholar 

  • Eklund, H., Nordstrom, B., Zeppezauer, E., Soderlund, G., Ohlsson, I., Boiwe, T., Soderberg, B.-O., Tapia, O., Brandem, C.-I., and Akeson, A., 1976, Three-dimensional structure of horse liver alcohol dehydro-genase at 2.4 Å resolution, J. Mol. Biol. 102:27–59.

    PubMed  CAS  Google Scholar 

  • Epp, O., Colman, P., Fehlhammer, H., Bode, W., Schiffer, M., Huber, R., and Palm, W., 1974, Crystal and molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI, Eur. J. Biochem. 45:513–524.

    PubMed  CAS  Google Scholar 

  • Fasman, G. D., and Potter, J., 1967, The optical rotary dispersion of two beta structures, Biochem. Biophys. Res. Commun. 27:209–215.

    PubMed  CAS  Google Scholar 

  • Fermi, G., 1975, Three-dimensional Fourier synthesis of human deoxyhemoglobin at 2.5 Å resolution: Refinement of the atomic model, J. Mol. Biol. 97:237–256.

    PubMed  CAS  Google Scholar 

  • Fett, J. W., and Deutsch, H. F., 1974, Primary Structure of the Mcg λ chain, Biochemistry 13:4102–4114.

    PubMed  CAS  Google Scholar 

  • Fleer, E. A. M., Verheij, H. M., and De Hass, G. H., 1978, The primary structure of bovine pancreatic phospholipase A, Eur. J. Biochem. 82:261–270.

    PubMed  CAS  Google Scholar 

  • Frier, J. A., and Perutz, M. F., 1977, Structure of human foetal deoxyhemoglobin, J. Mol. Biol. 112:97–112.

    PubMed  CAS  Google Scholar 

  • Hecht, M. H., Zweifel, B. O., and Scheraga, H. A., 1978, Helix-coil stability constants for the naturally occurring amino acids in water. 17. Threonine parameters from random poly[(hydroxypropyl) glutamine-co-L threonine], Macromolecules 11:545–551.

    CAS  Google Scholar 

  • Hendrickson, W. A., and Ward, K. B., 1975, Atomic models for the polypeptide backbones of myohemerythrin and hemerythrin, Biochem. Biophys. Res. Commun. 66:1349–1356.

    PubMed  CAS  Google Scholar 

  • Hendrickson, W. A., Klippenstein, G. L., and Ward, K. B., 1975, Tertiary structure of myohemerythrin at low resolution, Proc. Natl. Acad. Sci. U.S.A. 72:2160–2164.

    PubMed  CAS  Google Scholar 

  • Hill, D. J. T., Cardinaux, F., and Scheraga, H., 1977, Helix-coil stability constants in the naturally occurring amino acids in water. XIV. Methionine parameters from random poly(hydroxypropylglutamine, L-methionine), Biopolymers 16:2447–2467.

    PubMed  CAS  Google Scholar 

  • Holbrook, J. J., Liljas, A., Steindel, S. J., and Rossmann, M. G., 1975, Lactate dehydrogenase, in: The Enzymes, 3rd ed., Volume XI (P. D. Boyer, ed.), Academic Press, New York, pp. 191–292.

    Google Scholar 

  • Holmgren, A., Söderberg, B.-O., Eklund, H., and Bränden, C.-I., 1975, Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 Å resolution, Proc. Natl. Acad. Sci. U.S.A. 72:2305–2309.

    PubMed  CAS  Google Scholar 

  • Hsu, I.-N., Delbaere, L. T. J., James, M. N. G., and Hofmann, T., 1977, Penicillopepsin from Penicillium janthinellum crystal structure at 2.8 Å and sequence homology with porcine pepsin, Nature 266:140–145.

    PubMed  CAS  Google Scholar 

  • Ikenaka, T., Odani, S., Sakai, M., Nabeshima, Y., Sata, S., and Murao, S., 1974, Amino acid sequence of an alkaline proteinase inhibitor (Streptomyces subtilisin inhibitor) from Streptomyces albogriseolus S-3253, J. Biochem. 76:1191–1209.

    PubMed  CAS  Google Scholar 

  • Isogai, Y., Nemethy, G., Rackovsky, S., Leach, S. J., and Scheraga, H. A., 1980, Characterization of multiple bends in proteins, Biopolymers 19:1183–1210.

    PubMed  CAS  Google Scholar 

  • Kannan, K. K., Nostrand, B., Fridborg, K., Lovgren, S., Ohlsson, A., and Peter, M., 1975, Crystal structure of human erythrocyte carbonic anhydrase B. Three-dimensional structure at a nominal 2.2 Å resolution, Proc. Natl. Acad. Sci. U.S.A. 72:51–55.

    PubMed  CAS  Google Scholar 

  • Kidera, A., Konishi, Y., Oka, M., Ooi, T., and Scheraga, H. A., 1985, Statistical analysis of the physical properties of the 20 naturally occurring amino acids, J. Protein Chem. 4:23–55.

    CAS  Google Scholar 

  • Klipperstein, G. L., Van Riper, D. A., and Oosterom, E. A., 1972, A comparative study of the oxygen transport proteins of Dendrostomum pyroides, J. Biol. Chem. 247:5959–5963.

    Google Scholar 

  • Klipperstein, G. L., Cote, J. L., and Ludlam, S. E., 1976, The primary structure of myohemerythrin, Biochemistry 15:1128–1136.

    Google Scholar 

  • Konishi, Y., van Nispen, J. W., Davenport, G., and Scheraga, H. A., 1977, Helix-coil stability constants for the naturally occurring amino acids in water. 15. Arginine parameters from random poly(hydroxybutylglutamine-co-L-arginine), Macromolecules 10: 1264–1271.

    PubMed  CAS  Google Scholar 

  • Korszun, Z. R., and Salemme, F. R., 1977, Structure of cytochrome C555 of Chlorobium thiosulfatophilum: Primitive low-potential cytochrome c, Proc. Natl. Acad. Sci. U.S.A. 74:5244–5247.

    PubMed  CAS  Google Scholar 

  • Kretsinger, R. H., and Nockolds, C. E., 1973, Carp muscle calcium-binding protein. II. Structure determination and general description, J. Biol. Chem. 248:3313–3326.

    PubMed  CAS  Google Scholar 

  • Leszczynski, J. F., and Rose, G. D., 1986, Loops in globular proteins: A novel category of secondary structure, Science 234:849–855.

    PubMed  CAS  Google Scholar 

  • Levitt, M., 1978, Conformational preferences of amino acids in globular proteins, Biochemistry 17:4277–4285.

    PubMed  CAS  Google Scholar 

  • Levitt, M., and Chothia, C., 1976, Structural patterns in globular proteins, Nature 261:552–558.

    PubMed  CAS  Google Scholar 

  • Levitt, M., and Greer, J., 1977, Automatic identification of secondary structure in globular proteins, J. Mol. Biol. 114:181–239.

    PubMed  CAS  Google Scholar 

  • Lewis, P. N., Momany, F. A., and Scheraga, H. A., 1971, Folding of polypeptide chains in proteins: A proposed mechanism of folding, Proc. Natl. Acad. Sci. U.S.A. 68:2293–2297.

    PubMed  CAS  Google Scholar 

  • Lim, V. I., 1978, Polypeptide chain folding through a highly intermediate as a general principle of globular protein structure fonnation, FEBS Lett. 89:10–14.

    PubMed  CAS  Google Scholar 

  • Loehr, J. S., Lammers, P. J., Brimhall, B., and Hermodson, M. A., 1978, Amino acid sequence of hemerythrin from Themiste dyscritum, J. Biol. Chem. 253:5726–5731.

    PubMed  CAS  Google Scholar 

  • Low, B. W., Preston, H. S., Sato, A., Rosen, L. S., Searl, J. E., Rudko, A. D., and Richardson, J. S., 1976, Three dimensional structure of erabutoxin b neurotoxic protein: Inhibitor of acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 73:2291–2294.

    Google Scholar 

  • Matheson, R. R., Jr., Nemenoff, R. A., Cardinaux, F., and Scheraga, H. A., 1977, Helix-coil stability constants for the naturally occurring amino acids in water. XII. Asparagine parameters from random poly(hydroxybutylglutamine-co-L-asparagine), Biopolymers 16: 1567–1585.

    PubMed  CAS  Google Scholar 

  • Mathews, F. S., Bethge, P. H., and Czerwinski, E. W., 1979, The structure of cytochrome b562 from Escherichia coli at 2.5 Å resolution, J. Biol. Chem. 254:1699–1706.

    PubMed  CAS  Google Scholar 

  • Matthews, D. A., Alden, R. A., Bolin, J. T., Freer, S. T., Hamlin, R., Xuong, N., Kraut, J., Poe, M., Williams, M., and Hoogsteen, K., 1977, Dihydrofolate reductase: X-ray structure of the binary complex with methotrexate, Science 197:452–455.

    PubMed  CAS  Google Scholar 

  • Mitsui, Y., Satow, Y., Watanabe, Y., and Iitaka, Y., 1979, Crystal structure of a bacterial protein proteinase inhibitor (Streptomyces subtilisin inhibitor) at 2.6 Å resolution, J. Mol. Biol. 131:697–724.

    PubMed  CAS  Google Scholar 

  • Moras, D., Olson, K. W., Sabesan, M. N., Buehner, M., Ford, G. C., and Rossman, M. G., 1975, Studies of asymmetry in the three-dimensional structure of lobster D-glyceraldehyde 3-phospbate dehydrogenase, J. Biol. Chem. 250:9137–9162.

    PubMed  CAS  Google Scholar 

  • Nagy, J. A., Powers, S. P., Zweifel, B. O., and Scheraga, H. A., 1980, Helix-coil stability constants for the naturally occurring amino acids in water. 18. Tryptophan parameters from random poly[bydroxypropyl glutamine-co-L-tryptophanl, Macromolecules 13: 1428–1440.

    CAS  Google Scholar 

  • Ploegman, J. H., Drent, G., Kalk, K. H., Hol, W. G. J., Heinrikson, R. L., Keim, P., Weng, L., and Russell, J., 1978a, The covalent and tertiary structure of bovine liver rhodanese, Nature 273:124–129.

    PubMed  CAS  Google Scholar 

  • Ploegman, J. H., Drent, G., Kalk, K. H., and Hol, W. G. J., 1978b, Structure of bovine liver rhodanese. I. Structure determination at 2.5 Å resolution and a comparison of the conformation and sequence of its two domains, J. Mol. Biol. 123:557–594.

    PubMed  CAS  Google Scholar 

  • Poljak, R. J., 1975, Three-dimensional structure, function and genetic control of immunoglobulins, Nature 256: 373–376.

    PubMed  CAS  Google Scholar 

  • Poljak, R. J., Amzel, L. M., Chen, B. L., Phizackerley, R; P., and Saul, F., 1974, The three-dimensional structure of the Fab′ fragment of a human myeloma immunoglobulin at 2.0 Å resolution, Proc. Natl. Acad. Sci. U.S.A. 71:3440–3444.

    PubMed  CAS  Google Scholar 

  • Reeke, G. N., Jr., Becker, J. W., and Edelman, G. M., 1975, The covalent and three-dimensional structure of concanavalin A. IV. Atomic coordinates, hydrogen bonding, and quaternary structure, J. Biol. Chem. 250: 1525–1547.

    PubMed  CAS  Google Scholar 

  • Remington, S. J., Anderson, W. F., Owen, J., TenEyck, L. F., Grainger, C. T., and Matthews, B. W., 1978, Structure of the lysozyme from bacteriophage T4: An electron density map at 2.4 Å resolution, J. Mol. Biol. 118:81–98.

    PubMed  CAS  Google Scholar 

  • Richardson, J. S., 1976, Handedness of crossover connections in ß-sheets, Proc. Natl. Acad. Sci. U.S.A. 73: 2619–2623.

    PubMed  CAS  Google Scholar 

  • Richardson, J. S., 1977, ß-sheet topology and the relatedness of proteins, Nature 268:495–500.

    PubMed  CAS  Google Scholar 

  • Richardson, J. S., 1981, The anatomy and taxonomy of protein structure, Adv. Protein Chem. 34:167–339.

    PubMed  CAS  Google Scholar 

  • Richardson, J. S., Thomas, K. A., Rubin, B. H., and Richardson, D. C., 1975a, Crystal structure of bovine Cu, Zn superoxide dismutase at 3 Å resolution: Chain tracing and metal ligands, Proc. Natl. Acad. Sci. U.S.A. 72:1349–1353.

    PubMed  CAS  Google Scholar 

  • Richardson, J. S., Thomas, K. A., and Richardson, D. C., 1975b, Alpha-carbon coordinates for bovine Cu,Zn superoxide dismutase, Biochem. Biophys. Res. Commun. 63:986–992.

    PubMed  CAS  Google Scholar 

  • Richardson, J. S., Getzoff, E. D., and Richardson, D. C., 1978, The ß-bulge: A common small unit of nonrepetitive protein structure, Proc. Natl. Acad. Sci. U.S.A. 75:2574–2578.

    PubMed  CAS  Google Scholar 

  • Romero-Herrera, A. E., and Lehmann, H., 1974, Residue 122 of sperm whale and horse myoglobin, Biochim. Biophys. Acta 336:318–323.

    CAS  Google Scholar 

  • Rose, G. D., Gierasch, L. M., and Smith, J. A., 1985, Turns in peptides and proteins, Adv. Protein Chem. 37: 1–109.

    PubMed  CAS  Google Scholar 

  • Rossmann, M. G., and Argos, P., 1975, A comparison of the heme binding pocket in globulins and cytochrome b-5, J. Biol. Chem. 250:7525–7532.

    PubMed  CAS  Google Scholar 

  • Rossmann, M. G., and Argos, P., 1981, Protein folding, Annu. Rev. Biochem. 50:497–532.

    PubMed  CAS  Google Scholar 

  • Rossmann, M. G., Moras, D., and Olsen, K., 1974, Chemical and biological evolution of a nucleotide-binding protein, Nature 250:194–199.

    PubMed  CAS  Google Scholar 

  • Saul, F. A., Amzel, L. M., and Poljak, R. J., 1978, Preliminary refinement and structural analysis of the Fab′ fragment from human immunoglobulin New at 2.0 Å resolution, J. Biol. Chem. 253:585–597.

    PubMed  CAS  Google Scholar 

  • Sawyer, L., Sholton, D. M., Campbell, J. W., Wendell, P. L., Muirhead, H., Watson, H. C., Diamond, R., and Ladner, R. C., 1978, The atomic structure of crystalline porcine pancreatic elastase at 2.5 α resolution: Comparisons with the structure of α-chymotrypsin, J. Mol. Biol. 118:137–208.

    PubMed  CAS  Google Scholar 

  • Schmid, M. F., and Herriott, J. R., 1976, Structure of carboxypeptidase B at 2.8 α resolution, J. Mol. Biol. 103:175–190.

    PubMed  CAS  Google Scholar 

  • Schulz, G. E., 1977, Structural rules for globular proteins, Angew. Chem. [Engl.] 16:23–32.

    CAS  Google Scholar 

  • Scouloudi, H., and Baker, E. N., 1978, X-ray crystallographic studies of seal myoglobin: The molecule at 2.5 Å resolution, J. Mol. Biol. 126:637–660.

    PubMed  CAS  Google Scholar 

  • Snell, C. R., and Fasman, G. D., 1973, Kinetics and thermodynamics of the a helix ⇄ ß transconformation of poly(L-lysine) and L-leucine copolymers. A compensation phenomenon, Biochemistry 12:1017–1025.

    PubMed  CAS  Google Scholar 

  • Stenkamp, R. E., Sieker, L. C., Jensen, L. H., and McQueen, J. E., Jr., 1978, Structure of methemerythrin at 2.8 Å resolution: Computer graphics fit of an averaged electron density map, Biochemistry 17:2499–2504.

    PubMed  CAS  Google Scholar 

  • Sternberg, M. J. E., and Thornton, J. M., 1976, On the conformation of proteins: The handedness of the ß-strand-α-helix-ß-strand unit, J. Mol. Biol. 105:367–382.

    PubMed  CAS  Google Scholar 

  • Sternberg, M. J. E., and Thornton, J. M., 1978, Prediction of protein structure from amino acid sequence, Nature 271:15–20.

    PubMed  CAS  Google Scholar 

  • Stone, D., Phillips, A. W., and Burchall, J. J., 1977, The amino acid sequence of the dihydrofolate reductase of a trimethoprin-resistant strain of Escherichia coli. Eur. J. Biochem. 72:613–624.

    PubMed  CAS  Google Scholar 

  • Sueki, M., Lee, S., Powers, S. P., Denton, J. B., Konishi, Y., and Scheraga, H. A., 1984, Helix-coil stability constants for the naturally occurring amino acids in water. 22. Histidine parameters from random poly(hydroxybutyl) glutamine-co-L-histidine, Macromolecules. 17: 148–155.

    CAS  Google Scholar 

  • Suzuki, E., and Robson, B., 1976, Relationship between helix-coil transition parameters for synthetic polypeptides and helix conformation parameters for globular proteins. A simple model, J. Mol. Biol. 107:357–367.

    PubMed  CAS  Google Scholar 

  • Swanson, R., Trus, B. L., Mandel, N., Mandel, G., Kallai, O. B., and Dickerson, R. E., 1977, Tuna cytochrome c at 2.0 Å resolution. I. Ferricytochrome structure analysis, J. Biol. Chem. 252:759–775.

    PubMed  CAS  Google Scholar 

  • Takano, T., 1977, Structure of myoglobin refined at 2.0 Å resolution, J. Mol. Biol. 110:537–568.

    PubMed  CAS  Google Scholar 

  • Takano, T., Trus, B. L., Mandel, N., Mandel, G., Kallai, O. B., Swanson, R., and Dickerson, R. E., 1977, Tuna cytochrome c at 2.0 Å resolution. I. Ferrocytochrome structure analysis, J. Biol. Chem. 252:776–785.

    PubMed  CAS  Google Scholar 

  • Timkovich, R., and Dickerson, R. E., 1976, The structure of Paracoccus denitrificans cytochrome C550, J. Biol. Chem. 251:4033–4046.

    PubMed  CAS  Google Scholar 

  • Titani, K., Ericsson, L. H., Walsh, K. A., and Neurath, H., 1975, Amino-acid sequence of bovine carboxypep-tidase B, Proc. Natl. Acad. U.S.A. 72:1666–1670.

    CAS  Google Scholar 

  • Toniolo, C., Bonora, G. M., and Scatturin, A., 1975, Linear oligopeptides. xxv. The effect of a sulphur atom in γ-position in the secondary structure of homo-oligopeptides, Gaz. Chim. Ital. 105:1063–1071.

    CAS  Google Scholar 

  • Van Nispen, J. W., Hill, D. J., and Scheraga, H. A., 1977, Helix-coil stability constants for the naturally occurring amino acids in water. XIII. The presence of by-products in amino-acid analysis of copolymers and their effect on the guest parameters: Recomputed values of σ and s for L-serine, Biopolymers 16: 1587–1592.

    PubMed  CAS  Google Scholar 

  • Watenpaugh, K. D., Margulis, T. N., Sieker, L. C., and Jensen, L. H., 1978, Water structure in a protein crystal: Rubredoxin at 1.2 Å resolution, J. Mol. Biol. 122:175–190.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Chou, P.Y. (1989). Prediction of Protein Structural Classes from Amino Acid Compositions. In: Fasman, G.D. (eds) Prediction of Protein Structure and the Principles of Protein Conformation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1571-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1571-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8860-2

  • Online ISBN: 978-1-4613-1571-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics