Skip to main content

Abstract

It is believed that a unique tertiary structure of a protein is dictated by its amino acid sequence. The folding process is finished within a limited time, possibly by the testing of reasonable number of candidate conformations and not by searching a myriad of conceivable structures. The role of the side chains of hydrophobic amino acids such as Leu, Ile, Val, and Phe in the nucleation must be very important for a stable tertiary structure to be attained within a limited period of time. On the other hand, the methods proposed so far to simulate the folding process have met with insurmountable difficulties: energies-minimization approaches lead to the multiple-minima problem, and combinatorial approaches sometimes have to handle an enormous number of conformations to be tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, C. M., McDonald, R. C., and Steitz, T. A., 1978, Sequencing a protein by x-ray crystallography. I. Interpretation of yeast hexokinase B at 2.5 Ã… resolution by model building, J. Mol. Biol. 123:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Banner, D. W., Bloomer, A. C., Petsko, G. A., Phillips, D. C., Pogson, C. I., Wilson, I. A., Corrao, P. H., Furth, A. J., Milman, J. D., Offord, R. E., Priddle, J. D., and Waley, S. G., 1975, Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 Ã… resolution using amino acid sequence data, Nature (London) 255:609–614.

    Article  CAS  Google Scholar 

  • Bernstein, F. C., Koetzle, T. F., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M., 1977, The protein data bank: A computer-based archival file for macromolecular structures, J. Mol. Biol. 112:535–542.

    Article  PubMed  CAS  Google Scholar 

  • Blake, C. C. F., and Rice, D. W., 1981, Phosphoglycerate kinase, Phil. Trans. R. Soc. Lond. [A] 293:93–104.

    Article  CAS  Google Scholar 

  • Bradshaw, R. A., Cancedda, F., Ericsson, L. H., Neumann, P. A., Piccoli, S. P., Schlesinger, M. J., Schriefer, K., and Walsh, K. A., 1981, Amino acid sequence of Escherichia coli alkaline phosphatase, Proc. Natl. Acad. Sci. U.S.A. 78:3473–3477.

    Article  PubMed  CAS  Google Scholar 

  • Bränden, C.-I., Schneider, G., Lindqvist, Y., Andersson, I., Knight, S., and Lorimer, G., 1987, Structural and evolutionary aspects of the key enzymes in photorespiration: RuBisCO and glycolate oxidase, Cold Spring Harb. Symp. Quant. Biol. 52:491–498.

    PubMed  Google Scholar 

  • Cederlund, E., Lindqvist, Y., Sölerlund, G., Branden, C.-I., and Jörnvall, H., 1988, Primary structure of glycolate oxidase from spinach, Eur. J. Biochem. 173:523–530.

    Article  PubMed  CAS  Google Scholar 

  • Chin, C. C. Q., Brewer, J. M., and Wold, F., 1981, The amino acid sequence of yeast enolase, J. Bioi. Chem. 256:1377–1384.

    CAS  Google Scholar 

  • Chothia, C., 1988, The 14th barrel rolls out, Nature (London) 333:598–599.

    Article  CAS  Google Scholar 

  • Cohen, F. E., Sternberg, M. J. E., and Taylor, W. R., 1982, Analysis and prediction of the packing of α-helices against a ß-sheet in the tertiary structure of globular proteins, J. Mol. Biol. 156:821–862.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F. E., Abarbanel, R. M., Kuntz, I. D., and Fletterick, R. J., 1983, Secondary structure assignment for α/ß proteins by a combinatorial approach, Biochemistry 22:4894–4904.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, I. P., Niermann, T., and Kirschner, K., 1987, Prediction of secondary structure by evolutionary comparison: Application to the a subunit of tryptophan synthase, Proteins 2:118–129.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, D., Almassy, R. J., Janson, C. A., Chapman, M. S., Suh, S. W., Casio, D., and Smith, W. W., 1987, Some evolutionary relationships of the primary biological catalysts glutamine synthase and RuBisCO, Cold Spring Harb. Symp. Quant. Biol. 52:483–490.

    PubMed  CAS  Google Scholar 

  • Epp, O., Ladenstein, R., and Wendel, A., 1983, The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution, Eur. J. Biochem. 133:51–59.

    Article  PubMed  CAS  Google Scholar 

  • Farber, G. K., Petsko, G. A., and Ringe, D., 1987, The 3.0 Ã… crystal structure of xylose isomerase from Streptomyces olivochromogenes, Protein Engineering 1:459–466.

    Article  PubMed  CAS  Google Scholar 

  • Garnier, J., Osguthorp, D. J., and Robson, B., 1978, Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, J. Mol. Biol. 120:97–120.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, A., Ollis, D. L., and Steitz, T. A., 1987, Crystal structure of muconate lactonizing enzyme at 3 Ã… resolution, J. Mol. Biol. 194:143–153.

    Article  PubMed  CAS  Google Scholar 

  • Hellinga, H. W., and Evans, P. R., 1985, Nucleotide sequence and high-level expression of the major Escherichia coli phosphofructokinase, Eur. J. Biochem. 149:363–373.

    Article  PubMed  CAS  Google Scholar 

  • Janin, J., and Chothia, C., 1980, Packing of α-helices onto ß-pleated sheets and the anatomy of α/ß proteins, J. Mol. Biol. 143:95–128.

    Article  PubMed  CAS  Google Scholar 

  • Lebioda, L., and Stec, B., 1988, Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor, Nature (London) 333:683–686.

    Article  CAS  Google Scholar 

  • Lederer, F., Cortial, S., Becam, A.-M., Haumont, P.-Y., and Perez, L., 1985, Complete amino acid sequence of flavocytochrome b 2 from baker’s yeast, Eur. J. Biochem. 152:419–428.

    Article  PubMed  CAS  Google Scholar 

  • Lifson, S., and Sander, C., 1979, Antiparallel and parallel ß-strands differ in amino acid residue preferences, Nature (London) 282: 109–111.

    Article  CAS  Google Scholar 

  • Lim, L. W., Shamala, N., Mathews, F. S., Steenkamp, D. J., Hamlin, R., and Xuong, N.-h., 1986, Three-dimensional structure of the iron-sulfur flavoprotein trimethylamine dehydrogenase at 2.4 Ã… resolution, J. Biol. Chem. 261:15140–15146.

    PubMed  CAS  Google Scholar 

  • Matthews, B. W., and Remington, S. J., 1974, The three dimensional structure of the lysozyme from bacteriophage T4, Proc. Natl. Acad. Sci. U.S.A. 71:4178–4182.

    Article  PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Stewart, M., 1975, Tropomyosin coiled-coil interactions: Evidence for an unstaggered structure, J. Mol. Biol. 98:293–304.

    Article  PubMed  CAS  Google Scholar 

  • Motherwell, S., 1978, PLUTO78, Cambridge Crystallographic Database User’s Manual, pp. 56–66, Cambridge, Crystallographic Data Centre, Cambridge, England.

    Google Scholar 

  • Muirhead, H., Clayden, D. A., Barford, D., Lorimer, C. G., Fothergill-Gilmore, L. A., Schiltz, E., and Schmitt, W., 1986, The structure of cat muscle pyruvate kinase, EMBO J. 5:475–481.

    PubMed  CAS  Google Scholar 

  • Nagano, K., 1973, Logical analysis of the mechanism of protein folding. I. Prediction of helices, loops and ß-structures from primary structure, J. Mol. Biol. 75:401–420.

    Article  PubMed  CAS  Google Scholar 

  • Nagano, K., 1974, Logical analysis of the mechanism of protein folding. II. The nucleation process, J. Mol. Biol. 84:337–372.

    Article  PubMed  CAS  Google Scholar 

  • Nagano, K., 1977a, Logical analysis of the mechanism of protein folding. IV. Super-secondary structures, J. Mol. Biol. 109:235–250.

    Article  PubMed  CAS  Google Scholar 

  • Nagano, K., 1977b, Triplet information in helix prediction applied to the analysis of super-secondary structures, J. Mol. Biol. 109:251–274.

    Article  PubMed  CAS  Google Scholar 

  • Nagano, K., 1980, Logical analysis of the mechanism of protein folding. V. Packing game simulation of α/ß proteins, J. Mol. Biol. 138:797–832.

    Article  PubMed  CAS  Google Scholar 

  • Nagano, K., and Hasegawa, K., 1975, Logical analysis of the mechanism of protein folding. III. Prediction of the strong long-range interactions, J. Mol. Biol. 94:257–281.

    Article  PubMed  CAS  Google Scholar 

  • Nagano, K., and Ponnuswamy, P. K., 1984, Prediction of packing of secondary structure, Adv. Biophys. 18: 115–148.

    Article  PubMed  CAS  Google Scholar 

  • Nargang, F., McIntosh, L., and Somerville, C., 1984, Nucleotide sequence of the ribulosebisphosphate carbox-ylase gene from Rhodospirillum rubrum, Mol. Gen. Genet. 193:220–224.

    Article  CAS  Google Scholar 

  • Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., and Kraut, J., 1985, The 2.6-Ã… crystal structure of Pseudomonas putida cytochrome P-450, J. Biol. Chem. 260:16122–16130.

    PubMed  CAS  Google Scholar 

  • Priestle, J. P., Grütter, M. G., White, J. L., Vincent, M. G., Kania, M., Wilson, E., Jardetzky, T. S., Kirschner, K., and Jansonius, J. N., 1987, Three-dimensional structure of the bifunctional enzyme N-(5′phosphoribosyl) anthranilate isomerase-indole-3-glycerol-phosphate synthase from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 84:5690–5694.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, G., Lindqvist, Y., Bränden, C.-I., and Lorimer, G., 1986, Three-dimensional structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum at 2.9 Ã… resolution, EMBO J. 5:3409–3415.

    PubMed  CAS  Google Scholar 

  • Sowadski, J. M., Handschumacher, M. D., Murthy, H. M. K., Foster, B. A., and Wyckoff, H. W., 1985, Refined structure of alkaline phosphatase from Escherichia coli at 2.8 Ã… resolution, J. Mol. Biol. 186:417–433.

    Article  PubMed  CAS  Google Scholar 

  • Stachelek, C., Stachelek, J., Swan, J., Botstein, D., and Konigsberg, W., 1986, Identification, cloning and sequence determination of the genes specifying hexokinase A and B from yeast, Nucleic Acids Res. 14: 945–962.

    Article  PubMed  CAS  Google Scholar 

  • Stone, D., and Smillie, L. B., 1978, The amino acid sequence of rabbit skeletal α-tropomyosin. The NH2-terminal half and complete sequence, J. Biol. Chem. 253:1137–1148.

    PubMed  CAS  Google Scholar 

  • Stuart, D. I., Levine, M., Muirhead, H., and Stammers, D. K., 1979, Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 Ã…, J. Mol. Biol. 134:109–142.

    Article  PubMed  CAS  Google Scholar 

  • Sygusch, J., Beaudry, D., and Allaire, M., 1987, Molecular architecture of rabbit skeletal muscle aldolase at 2.7 Ã… resolution, Proc. Natl. Acad. Sci. U.S.A. 84:7846–7850.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, I., Appelt, K., Dijk, J., White, S. W., and Wilson, K. S., 1984, 3-Ã… resolution structure of a protein with histone-like properties in prokaryotes, Nature (London) 310:376–381.

    Article  CAS  Google Scholar 

  • Taylor, W. R., and Thornton, J. M., 1983, Prediction of supersecondary structure in proteins, Nature (London) 301:540–542.

    Article  CAS  Google Scholar 

  • Taylor, W. R., and Thornton, J. M., 1984, Recognition of super-secondary structure in proteins, J. Mol. Biol. 173:487–514.

    Article  PubMed  CAS  Google Scholar 

  • Tolan, D. R., Amsden, A. B., Putney, S. D., Urdea, M. S., and Penhoet, E. E., 1984, The complete nucleotide sequence for rabbit muscle aldolase A messenger RNA, J. Biol. Chem. 259:1127–1131.

    PubMed  CAS  Google Scholar 

  • Vlahos, C. J., and Dekker, E. E., 1988, The complete amino acid sequence and identification of the active-site arginine peptide of Escherichia coli 2-keto-4-hydroxyglutarate aldolase, J. Biol. Chem. 263: 11683–11691.

    PubMed  CAS  Google Scholar 

  • Weijer, W. J., Hofsteenge, J., Beintema, J. J., Wierenga, R. K., and Drenth, J., 1983, p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens. 2. Fitting of the amino-acid sequence to the tertiary structure, Eur. J. Biochem. 133: 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Wierenga, R. K., Terpstra, P., and Hol, W. G. J., 1986, Prediction of the occurrence of the ADP-binding ßαß-fold in proteins, using an amino acid sequence fingerprint, J. Mol. Biol. 187:101–107.

    Article  PubMed  CAS  Google Scholar 

  • Winter, G., Koch, G. L. E., Hartley, B. S., and Barker, D. G., 1983, The amino acid sequence of the tyrosyl-tRNA synthetase from Bacillus stearothermophilus, Eur. J. Biochem. 132:383–387.

    Article  PubMed  CAS  Google Scholar 

  • Xia, Z.-x., Shamala, N., Bethge, P. H., Lim, L. W., Bellamy, H. D., Xuong, N.-h., Lederer, F., and Mathews, F. S., 1987, Three-dimensional structure of flavocytochrome b 2 from baker’s yeast at 3.0-Ã… resolution, Proc. Natl. Acad. Sci. U.S.A. 84:2629–2633.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Nagano, K. (1989). Prediction of Packing of Secondary Structure. In: Fasman, G.D. (eds) Prediction of Protein Structure and the Principles of Protein Conformation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1571-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1571-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8860-2

  • Online ISBN: 978-1-4613-1571-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics