Skip to main content

From RAS to MAPK: Cell-Free Assay System for RAS- and Rap1–Dependent B-Raf Activation

  • Chapter
Regulation of the RAS Signaling Network

Abstract

It is well established that RAS activates the MAP kinase cascade, consisting of the mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase (ERK), ERK kinase (MEK) and MEK kinase in mammals (for reviews, see refs. 1–4). MAP kinase is phosphorylated at both serine/threonine and tyrosine residues by MEK, and this phosphorylation causes MAP kinase activation.1–3 MEK is also phosphorylated at serine/threonine residues by MEK kinase and this phosphorylation causes MEK activation.5–7 Many MEK kinases have been identified: these include c-Raf-1,8–10 B-Raf,11–15 Mos16,17 and mStell.11,18 There are several lines of evidence that RAS is an upstream regulator of c-Raf-1: (i) anti-sense c-Raf-1 RNA and dominant negative c-Raf-1 inhibit the RAS-induced DNA synthesis and growth;19 (ii) RAS genetically positions upstream of c-Raf-1 in Drosophila 20 and Caenorhabditis elegans;21 (iii) dominant negative c-Raf-1 inhibits the RAS-induced MAP kinase activation in intact cells;22 and (iv) GTP-RAS directly interacts with c-Raf-1.23–28

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993; 268:14553–14556.

    PubMed  CAS  Google Scholar 

  2. Blenis J. Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci USA 1993; 90:5889–5892.

    Article  PubMed  CAS  Google Scholar 

  3. Johnson GL, Vaillancourt RR. Sequential protein kinase reactions controlling cell growth and differentiation. Curr Opin Cell Biol 1994; 6:230–238.

    Article  PubMed  CAS  Google Scholar 

  4. Daum G, Eisenmann-Tappe I, Fries H-W et al. The ins and outs of Raf kinases. Trends Biochem Sci 1994; 19:474–480.

    Article  PubMed  CAS  Google Scholar 

  5. Zheng C-F, Guan K-L. Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J 1994; 13:1123–1131.

    PubMed  CAS  Google Scholar 

  6. Alessi DR, Saito Y, Campbell DG et al. Identification of the sites in MAP kinase kinase-1 phosphorylated by p74Raf-l. EMBO J 1994; 13:1610–1619.

    PubMed  CAS  Google Scholar 

  7. Gardner AM, Vaillancourt RR, Lange-Carter CA et al. MEK-1 phosphorylation by MEK kinase, Raf, and mitogen-activated protein kinase: analysis of phosphopeptides and regulation of activity. Mol Biol Cell 1994; 5:193–201.

    PubMed  CAS  Google Scholar 

  8. Dent P, Haser W, Haystead TA et al. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 1992; 257:1404–1407.

    Article  PubMed  CAS  Google Scholar 

  9. Howe LR, Leevers SJ, Gómez N et al. Activation of the MAP kinase pathway by the protein kinase raf. Cell 1992; 71: 335–342.

    Article  PubMed  CAS  Google Scholar 

  10. Kyriakis JM, App H, Zhang XF et al. Raf-1 activates MAP kinase-kinase. Nature 1992; 358:417–421.

    Article  PubMed  CAS  Google Scholar 

  11. Lange-Carter CA, Johnson GL. RAS-dependent growth factor regulation of MEK kinase in PC12 cells. Science 1994; 265:1458–1461.

    Article  PubMed  CAS  Google Scholar 

  12. Vaillancourt RR, Gardner AM, Johnson GL. B-Raf-dependent regulation of the MEK-1/mitogen-activated protein kinase pathway in PC 12 cells and regulation by cyclic AMP. Mol Cell Biol 1994; 14:6522–6530.

    PubMed  CAS  Google Scholar 

  13. Jaiswal RK, Moodie SA, Wolfman A et al. The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras. Mol Cell Biol 1994; 14:6944–6953.

    PubMed  CAS  Google Scholar 

  14. Moodie SA, Paris MJ, Kolch W et al. Association of MEK1 with p21ras.GMPPNP is dependent on B-Raf. Mol Cell Biol 1994; 14: 7153–7162.

    PubMed  CAS  Google Scholar 

  15. Catling AD, Reuter CW, Cox ME et al. Partial purification of a mitogen-activated protein kinase kinase activator from bovine brain. Identification as B-Raf or a B-Raf-associated activity. J Biol Chem 1994; 269:30014–30021.

    PubMed  CAS  Google Scholar 

  16. Nebreda AR, Hunt T. The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs. EMBO J 1993; 12:1979–1986.

    PubMed  CAS  Google Scholar 

  17. Posada J, Yew N, Ahn NG et al. Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro. Mol Cell Biol 1993; 13:2546–2553.

    PubMed  CAS  Google Scholar 

  18. Lange-Carter CA, Pleiman CM, Gardner AM et al. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 1993; 260:315–319.

    Article  PubMed  CAS  Google Scholar 

  19. Kolch W, Heidecker G, Lloyd P et al. Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature 1991; 349:426–428.

    Article  PubMed  CAS  Google Scholar 

  20. Dickson B, Sprenger F, Morrison D et al. Raf functions downstream of RAS1 in the Sevenless signal transduction pathway. Nature 1992; 360:600–603.

    Article  PubMed  CAS  Google Scholar 

  21. Han M, Golden A, Han Y et al. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 1993; 363:133–140.

    Article  PubMed  CAS  Google Scholar 

  22. Schaap D, van der Wal J, Howe LR et al. A dominant-negative mutant of raf blocks mitogen-activated protein kinase activation by growth factors and oncogenic p21 ras. J Biol Chem 1993; 268:20232–20236.

    PubMed  CAS  Google Scholar 

  23. Moodie SA, Willumsen BM, Weber MJ et al. Complexes of RASGTP with Raf-1 and mitogen-activated protein kinase kinase. Science 1993; 260:1658–1661.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang XF, Settleman J, Kyriakis JM et al. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 1993; 364:308–313.

    Article  PubMed  CAS  Google Scholar 

  25. Warne PH, Viciana PR, Downward J. Direct interaction of RAS and the amino-terminal region of Raf-1 in vitro. Nature 1993; 364:352–355.

    Article  PubMed  CAS  Google Scholar 

  26. Van Aelst L, Barr M, Marcus S et al. Complex formation between RAS and RAF and other protein kinases. Proc Natl Acad Sci USA 1993; 90:6213–6217.

    Article  PubMed  Google Scholar 

  27. Vojtek AB, Hollenberg SM, Cooper JA. Mammalian RAS interacts directly with the serine/threonine kinase Raf. Cell 1993; 74:205–214.

    Article  PubMed  CAS  Google Scholar 

  28. Koide H, Satoh T, Nakafuku M et al. GTP-dependent association of Raf-1 with Ha-RAS: identification of Raf as a target downstream of RAS in mammalian cells. Proc Natl Acad Sci USA 1993; 90:8683–8686.

    Article  PubMed  CAS  Google Scholar 

  29. Itoh T, Kaibuchi K, Masuda T et al. A protein factor for ras p21-dependent activation of mitogen-activated protein (MAP) kinase through MAP kinase kinase. Proc Natl Acad Sci USA 1993; 90:975–979.

    Article  PubMed  CAS  Google Scholar 

  30. Yamamori B, Kuroda S, Shimizu K et al. Purification of a RAS-dependent mitogen-activated protein kinase kinase kinase from bovine brain cytosol and its identification as a complex of B-Raf and 14-3-3 proteins. J Biol Chem 1995; 2706:11723–11726.

    Google Scholar 

  31. Kawata M, Matsui Y, Kondo J et al. A novel small molecular weight GTP-binding protein with the same putative effector domain as the ras proteins in bovine brain membranes. Purification, determination of primary structure, and characterization. J Biol Chem 1988; 263:18965–18971.

    PubMed  CAS  Google Scholar 

  32. Pizon V, Chardin P, Lerosey I et al. Human cDNAs rap1 and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the ‘effector’ region. Oncogene 1988; 3:201–204.

    PubMed  CAS  Google Scholar 

  33. Kitayama H, Sugimoto Y, Matsuzaki T et al. A ras-related gene with transformation suppressor activity. Cell 1989; 56:77–84.

    Article  PubMed  CAS  Google Scholar 

  34. Ohtsuka T, Shimizu K, Yamamori B et al. Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein. J Biol Chem 1996; 271:1258–1261.

    Article  PubMed  CAS  Google Scholar 

  35. Itoh T, Kaibuchi K, Masuda T et al. The post-translational processing of ras p21 is critical for its stimulation of mitogen-activated protein kinase. J Biol Chem 1993; 268:3025–3028.

    PubMed  CAS  Google Scholar 

  36. Matsuda S, Kosako H, Takenawa K et al. Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade. EMBO J 1992; 11:973–982.

    PubMed  CAS  Google Scholar 

  37. Gotoh Y, Moriyama K, Matsuda S et al. Xenopus M phase MAP kinase: isolation of its cDNA and activation by MPF. EMBO J 1991; 10: 2661–2668.

    PubMed  CAS  Google Scholar 

  38. Miyano O, Kameshita I, Fujisawa H. Purification and characterization of a brain-specific multifunctional calmodulin-dependent protein kinase from rat cerebellum. J Biol Chem 1992; 267: 1198–1203.

    PubMed  CAS  Google Scholar 

  39. Mizuno T, Kaibuchi K, Yamamoto T et al. A stimulatory GDP/GTP exchange protein for smg p21 is active on the post-translationally processed form of c-Ki-ras p21 and rhoA p21. Proc Natl Acad Sci USA 1991; 88:6442–6446.

    Article  PubMed  CAS  Google Scholar 

  40. Sturgill TW, Ray LB, Erikson E et al. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 1988; 334:715–718.

    Article  PubMed  CAS  Google Scholar 

  41. Kuroda S, Shimizu K, Yamamori B et al. Purification and characterization of REKS from Xenopus eggs. Identification of REKS as a RAS-dependent mitogen-activated kinase kinase kinase. J Biol Chem 1995; 270:2460–2465.

    Article  PubMed  CAS  Google Scholar 

  42. Moore BW, Perez VJ. Specific acidic proteins of the nervous system. In: Carlson FD, ed. Physiological and Biochemical aspects of nervous integration, Prentice-Hall, Englewood Cliffs, NJ, 1967: 343–359.

    Google Scholar 

  43. Aitken A, Collinge DB, van Heusden BP et al. 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem Sci 1992; 17:498–501.

    Article  PubMed  CAS  Google Scholar 

  44. Boston PF, Jackson P, Kynoch PAM et al. Purification, properties, and immunohistochemical localization of human brain 14-3-3 protein. J Neurochem 1982; 38:1466–1474.

    Article  PubMed  CAS  Google Scholar 

  45. Yamauchi T, Nakata H, Fujisawa H. A new activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase. Purification and characterization. J Biol Chem 1981; 256:5404–5409.

    PubMed  CAS  Google Scholar 

  46. Aitken A, Ellis CA, Harris A et al. Kinase and neurotransmitters. Nature 1990; 344:594.

    PubMed  CAS  Google Scholar 

  47. Isobe T, Hiyane Y, Ichimura T et al. Activation of protein kinase C by the 14-3-3 proteins homologous with Exol protein that stimulates calcium-dependent exocytosis. FEBS Lett 1992; 308:121–124.

    Article  PubMed  CAS  Google Scholar 

  48. Morgan A, Burgoyne RD. Exol and Exo2 proteins stimulate calcium-dependent exocytosis in permeabilized adrenal chromaffin cells. Nature 1992; 355:833–836.

    Article  PubMed  CAS  Google Scholar 

  49. Zupan LA, Steffens DL, Berry CA et al. Cloning and expression of a human 14-3-3 protein mediating phospholipolysis. Identification of an arachidonoyl-enzyme intermediate during catalysis. J Biol Chem 1992; 267:8707–8710.

    PubMed  CAS  Google Scholar 

  50. van Heusden GP, Wenzel TJ, Lagendijk EL et al. Characterization of the yeast BMH1 gene encoding a putative protein homologous to mammalian protein kinase ll activators and protein kinase C inhibitors. FEBS Lett 1992; 302:145–150.

    Article  PubMed  Google Scholar 

  51. Shimizu K, Kuroda S, Yamamori B et al. Synergistic activation by RAS and 14-3-3 protein of a mitogen-activated protein kinase kinase kinase named RAS-dependent extracellular signal-regulated kinase kinase stimulator. J Biol Chem 1994; 269:22917–22920.

    PubMed  CAS  Google Scholar 

  52. Irie K, Gotoh Y, Yashar BM et al. Stimulatory effects of yeast and mammalian 14-3-3 protein on the Raf protein kinase. Science 1994; 265:1716–1719.

    Article  PubMed  CAS  Google Scholar 

  53. Freed E, Symons M, Macdonald SG et al. Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science 1994; 265:1713–1716.

    Article  PubMed  CAS  Google Scholar 

  54. Fu H, Xia K, Pallas DC et al. Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science 1994; 266:126–129.

    Article  PubMed  CAS  Google Scholar 

  55. Fantl WJ, Muslin AJ, Kikuchi A et al. Activation of Raf-1 by 14-3-3 proteins. Nature 1994; 371:612–614.

    Article  PubMed  CAS  Google Scholar 

  56. Pallas DC, Fu H, Haehnel LC et al. Association of Polyomavirus middle tumor antigen with 14-3-3 proteins. Science 1994; 265:535–537.

    Article  PubMed  CAS  Google Scholar 

  57. Reuther GW, Fu H, Cripe LD et al. Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 family. Science 1994; 266:129–133.

    Article  PubMed  CAS  Google Scholar 

  58. Hachiya N, Alam R, Sakasegawa Y et al. A mitochondrial import factor purified from rat liver cytosol is an ATP- dependent conformational modulator for precursor proteins. EMBO J 1993; 12:1579–1586.

    PubMed  CAS  Google Scholar 

  59. Hachiya N, Komiya T, Alam R et al. MSF, a novel cytoplasmic chaper-one which functions in precursor targeting to mitochondria. EMBO J 1994; 13:5146–5154.

    PubMed  CAS  Google Scholar 

  60. Stanton VP, Nichols DW, Laudano AP et al. Definition of the human raf amino-terminal regulatory region by deletion mutagenesis. Mol Cell Biol 1989; 9:639–647.

    PubMed  CAS  Google Scholar 

  61. Heidecker G, Huleihel M, Cleveland JL et al. Mutational activation of c-Raf-1 and definition of the minimal transforming sequence. Mol Cell Biol 1990; 10:2503–2512.

    PubMed  CAS  Google Scholar 

  62. Bruder JT, Heidecker G, Rapp UR. Serum-, TPA-, and RAS-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev 1992; 6:545–556.

    Article  PubMed  CAS  Google Scholar 

  63. Storm SM, Cleveland JL, Rapp UR. Expression of raf family proto-oncogene in normal mouse tissues. Oncogene 1990; 5:345–351.

    PubMed  CAS  Google Scholar 

  64. Campa MJ, Chang KJ, Molina y Vedia L et al. Inhibition of ras-induced germinal vesicle breakdown in Xenopus oocytes by rap-1B. Biochem Biophys Res Commun 1991; 174:1–5.

    Article  PubMed  CAS  Google Scholar 

  65. Yatani A, Quilliam LA, Brown AM et al. RaplA antagonizes the ability of RAS and RAS-Gap to inhibit muscarinic K+ channels. J Biol Chem 1991; 266:22222–22226.

    PubMed  CAS  Google Scholar 

  66. Sakoda T, Kaibuchi K, Kishi K et al. smg/rap1/Krev-1 p21s inhibit the signal pathway to the c-fos promoter/enhancer from c-Ki-ras p21 but not from c-Raf-1 kinase in NIH3T3 cells. Oncogene 1992; 7:1705–1711.

    PubMed  CAS  Google Scholar 

  67. Jelinek MA, Hassell JA. Reversion of middle T antigen-transformed Rat-2 cells by Krev-1: implications for the role of p21c-ras in polyomavirus-mediated transformation. Oncogene 1992; 7: 1687–1698.

    PubMed  CAS  Google Scholar 

  68. Cook SJ, Rubinfeld B, Albert I et al. RapV12 antagonizes RAS-depen-dent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J 1993; 12:3475–3485.

    PubMed  CAS  Google Scholar 

  69. Yoshida Y, Kawata M, Miura Y et al. Microinjection of smg/rapl/Krev-1 p21 into Swiss 3T3 cells induces DNA synthesis and morphological changes. Mol Cell Biol 1992; 12:3407–3414.

    PubMed  CAS  Google Scholar 

  70. Omitted in proof.

    Google Scholar 

  71. Omitted in proof.

    Google Scholar 

  72. Omitted in proof.

    Google Scholar 

  73. Omitted in proof.

    Google Scholar 

  74. Omitted in proof.

    Google Scholar 

  75. Omitted in proof.

    Google Scholar 

  76. Nassar N, Horn G, Herrmann C et al. The 2.2 A crystal structure of the RAS-binding domain of the serine/threonine kinase c-Raf-1 in complex with RaplA and a GTP analogue. Nature 1995; 375:554–560.

    Article  PubMed  CAS  Google Scholar 

  77. McCormick F. Activators and effectors of ras p21 proteins. Curr Opin Genet Dev 1994; 4:71–76.

    Article  PubMed  CAS  Google Scholar 

  78. Farnsworth CL, Freshney NW, Rosen LB et al. Calcium activation of RAS mediated by neuronal exchange factor RAS-GRF. Nature 1995; 376:524–527.

    Article  PubMed  CAS  Google Scholar 

  79. Tanaka S, Morishita T, Hashimoto Y et al. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc Natl Acad Sci USA 1994; 91:3443–3447.

    Article  PubMed  CAS  Google Scholar 

  80. Gotoh T, Hattori S, Nakamura S et al. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol Cell Biol 1995; 15:6746–6753.

    PubMed  CAS  Google Scholar 

  81. Feller SM, Knudsen B, Hanafusa H. c-Abl kinase regulates the protein binding activity of c-Crk. EMBO J 1994; 13:2341–2351.

    PubMed  CAS  Google Scholar 

  82. ten Hoeve J, Kaarinten V, Fioretos T et al. Cellular interactions of CRKL, and SH2–SH3 adaptor protein. Cancer Res 1994; 54: 2563–2567.

    PubMed  CAS  Google Scholar 

  83. Beitner-Johnson D, LeRoith D. Insulin-like growth factor-I stimulates tyrosine phosphorylation of endogenous c-Crk. J Biol Chem 1995; 270: 5187–5190.

    Article  PubMed  CAS  Google Scholar 

  84. Hoshijima M, Kikuchi A, Kawata M et al. Phosphorylation by cyclic AMP-dependent protein kinase of a human platelet Mr 22,000 GTP-binding protein (smg p21) having the same putative effector domain as the ras gene products. Biochem Biophys Res Commun 1988; 157:851–860.

    Article  PubMed  CAS  Google Scholar 

  85. Kawata M, Kikuchi A, Hoshijima M et al. Phosphorylation of smg p21, a ras p21-like GTP-binding protein, by cyclic AMP-dependent protein kinase in a cell-free system and in response to prostaglandin El in intact human platelets. J Biol Chem 1989; 264:15688–15695.

    PubMed  Google Scholar 

  86. Lapetina EG, Lacal JC, Reep BR et al. A ras-related protein is phospho-rylated and translocated by agonists that increase cAMP levels in human platelets. Proc Natl Acad Sci USA 1989; 86:3131–3134.

    Article  PubMed  CAS  Google Scholar 

  87. Siess W, Winegar DA, Lapetina EG. Rap1-B is phosphorylated by protein kinase A in intact human platelets. Biochem Biophys Res Commun 1990; 170:944–950.

    Article  PubMed  CAS  Google Scholar 

  88. Lerosey I, Pizon V, Tavitian A et al. The cAMP-dependent protein kinase phosphorylates the rap1 protein in vitro as well as in intact fibroblasts, but not the closely related rap2 protein. Biochem Biophys Res Commun 1991; 175:430–436.

    Article  PubMed  CAS  Google Scholar 

  89. Quilliam LA, Mueller H, Bohl BP et al. Rap1A is a substrate for cyclic AMP-dependent protein kinase in human neutrophils. J Immunol 1991; 147:1628–1635.

    PubMed  CAS  Google Scholar 

  90. Sahyoun N, Mcdonald OB, Farrell F et al. Phosphorylation of a RAS-related GTP-binding protein, Rap-1b, by a neuronal Ca2+/calmodulin-de-pendent protein kinase, CaM kinase Gr. Proc Natl Acad Sci USA 1991; 88:2643–2647.

    Article  PubMed  CAS  Google Scholar 

  91. Miura Y, Kaibuchi K, Itoh T et al. Phosphorylation of smg p21B/rap 1B p21 by cyclic GMP-dependent protein kinase. FEBS Lett 1992; 297:171–174.

    Article  PubMed  CAS  Google Scholar 

  92. Hata Y, Kaibuchi K, Kawamura S et al. Enhancement of the actions of smg p21 GDP/GTP exchange protein by the protein kinase A-catalyzed phosphorylation of smg p21. J Biol Chem 1991; 266:6571–6577.

    PubMed  CAS  Google Scholar 

  93. Lazarowski ER, Lacal JC, Lapetina EG. Agonist-induced phosphorylation of an immunologically ras-related protein in human erythroleukemia cells. Biochem Biophys Res Commun 1989; 161:972–978.

    Article  PubMed  CAS  Google Scholar 

  94. Omitted in proof.

    Google Scholar 

  95. Frodin M, Peraldi P, Van Obberghen E. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells. J Biol Chem 1994; 269:6207–6214.

    PubMed  CAS  Google Scholar 

  96. Faure M, Voyno-Yasenetskaya TA, Bourne HR. cAMP and beta gamma subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J Biol Chem 1994; 269:7851–7854.

    PubMed  CAS  Google Scholar 

  97. Burgering BM, Pronk GJ, wan Weeren PC et al. cAMP antagonizes p21ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSOS nucleotide exchange factor. EMBO J 1993; 12:4211–4220.

    PubMed  CAS  Google Scholar 

  98. Wu J, Dent P, Jelinek T et al. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3′,5′-monophosphate. Science 1993; 262:1065–1069.

    Article  PubMed  CAS  Google Scholar 

  99. VanRenterghem B, Browning MD, Maller JL. Regulation of mitogen-activated protein kinase activation by protein kinases A and C in a cell-free system. J Biol Chem 1994; 269:24666–24672.

    PubMed  CAS  Google Scholar 

  100. Magee AI, Newman CM, Giannakouros T et al. Lipid modifications and function of the ras superfamily of proteins. Biochem Soc Trans 1992; 20:497–499.

    PubMed  CAS  Google Scholar 

  101. Kawata M, Farnsworth CC, Yoshida Y et al. Posttranslationally processed structure of human platelet protein smg p21B: Evidence for geranyl-geranylation and carboxyl methylation of the C-terminal cysteine. Proc Natl Acad Sci USA 1990; 87:8960–8964.

    Article  PubMed  CAS  Google Scholar 

  102. Horiuchi H, Kaibuchi K, Kawamura M et al. The posttranslational processing of ras p21 is critical for its stimulation of yeast adenylate cyclase. Mol Cell Biol 1992; 12:4515–4520.

    PubMed  CAS  Google Scholar 

  103. Orita S, Kaibuchi K, Kuroda S et al. Comparison of kinetic properties between two mammalian ras p21 GDP/GTP exchange proteins, ras guanine nucleotide-releasing factor and smg GDP dissociation stimulator. J Biol Chem 1993; 268:25542–25546.

    PubMed  CAS  Google Scholar 

  104. Nakanishi H, Orita S, Kaibuchi K et al. Kinetic properties of Ash/Grb2–interacting GDP/GTP exchange protein. Biochem Biophys Res Commun 1994; 198:1255–1261.

    Article  PubMed  CAS  Google Scholar 

  105. Kazanietz MG, Bustelo XR, Barbacid M et al. Zinc finger domains and phorbol ester pharmacophore. Analysis of binding to mutated form of protein kinase C zeta and the vav and c-Raf proto-oncogene products. J Biol Chem 1994; 269:11590–11594.

    PubMed  CAS  Google Scholar 

  106. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258:607–614.

    Article  PubMed  CAS  Google Scholar 

  107. Nakanishi H, Brewer KA, Exton JH. Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-triphosphate. J Biol Chem 1993; 268:13–16.

    PubMed  CAS  Google Scholar 

  108. Ghosh S, Xie WQ, Quest AF et al. The cysteine-rich region of Raf-1 kinase contains Zinc, translocates to liposomes, and is adjacent to a segment that binds to GTP-RAS. J Biol Chem 1994; 269:10000–10007.

    PubMed  CAS  Google Scholar 

  109. Dent P, Reardon DB, Morrison DK et al. Regulation of Raf-1 and Raf-1 mutants by RAS-dependent and RAS-independent mechanisms in vitro. Mol Cell Biol 1995; 15:4125–4135.

    PubMed  CAS  Google Scholar 

  110. Kuroda S, Ohtsuka T, Yamamori B et al. Different effects of various phospholipids on Ki-Ras-, Ha-Ras, and Rap1B-induced B-Raf activation. J Biol Chem 1996; 271:14682–14683.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 R.G. Landes Company

About this chapter

Cite this chapter

Shimizu, K., Ohtsuka, T., Takai, Y. (1996). From RAS to MAPK: Cell-Free Assay System for RAS- and Rap1–Dependent B-Raf Activation. In: Regulation of the RAS Signaling Network. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1183-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1183-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8502-1

  • Online ISBN: 978-1-4613-1183-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics