Skip to main content

Mammals II: Downstream of RAS and Actin-Cytoskeleton

  • Chapter
Regulation of the RAS Signaling Network

Abstract

In the two preceding chapters we have learned how (i) RAS is translocated from the cytoplasm to the plasma membrane by its C-terminal farnesylation and a few other covalent modifications, and how (ii) the inactive GDP-bound form of RAS (D-RAS) on the plasma membrane is then converted to the active GTP-bound form (T-RAS) by SOS and a few other GDP/GTP exchange factors (GEFs). In this chapter we will discuss: (i) the role of several distinct RAS GTPase activating proteins (GAPs) in converting the normal T-RAS to D-RAS; (ii) the oncogenic mutants of RAS that are resistant to the action of GAPs; (iii) the role of several distinct effectors of T-RAS in transmitting the oncogenic (or mitogenic) RAS signals further downstream; (iv) the role of actin-cytoskeletal proteins in the regulation of RAS signaling; (v) three G proteins in the Rho family which are involved in the reorganization of the actin-cytoskeleton caused by T-RAS and (vi) the genes whose expression is upregulated or downregulated by T-RAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trahey M, McCormick F. A cytoplasmic protein stimulates normal Ras GTPase, but does not affect oncogenic mutants. Science 1987; 238: 542–545.

    Article  PubMed  CAS  Google Scholar 

  2. Gibbs JB, Schaber MD, Allard WJ, Sigal IS, Scolnick EM. Purification of Ras GAP from bovine brain. Proc Natl Acad Sci USA 1988; 85:5026–5030.

    Article  PubMed  CAS  Google Scholar 

  3. Vogel US, Dixon RAF, Schaber MD, Diehl RE, Marshall MS, Scolnick EM, Sigal IS, Gibbs JB. Cloning of bovine GAP and its interaction with oncogenic Ras. Nature 1988; 335:90–93.

    Article  PubMed  CAS  Google Scholar 

  4. Marshall MS, Hill WS, Ng AS, Vogel US, Schaber MD, Scolnick EM, Dixon RAF, Sigal IS, Gibbs JB. A C-terminal domain of GAP is sufficient to stimulate Ras GTPase activity. EMBO J 1989; 8:1105–1110.

    PubMed  CAS  Google Scholar 

  5. Maruta H, Holden J, Sizeland A, D’Abaco G. The residues of Ras and Rap proteins that determine their GAP specificities. J Biol Chem 1991; 266:11661–11668.

    PubMed  CAS  Google Scholar 

  6. Briggs SD, Bryan SS, Jove R, Sanderson SD, Smithgall TE. The Ras GAP is an SH3 domain-binding protein and substrate for the Src-related Tyr kinase, Hck. J Biol Chem 1995; 270:14718–14724.

    Article  PubMed  CAS  Google Scholar 

  7. Parker F, Maurier F, Delumeau I et al. A Ras GAP SH3 binding protein (p68/G3BP). Mol Cell Biol 1996; 16:2561–2569.

    PubMed  CAS  Google Scholar 

  8. Ellis C, Moran M, Anderson D, Liu X, Mbamalu G, Pawson T. Phosphorylation of GAP and GAP-associated proteins by transforming and mitoigenic tyrosine kinases. Nature 1990; 343:377–381.

    Article  PubMed  CAS  Google Scholar 

  9. Pawson T. Protein modules and signaling networks. Nature 1995; 373:573–580.

    Article  PubMed  CAS  Google Scholar 

  10. Garrett MD, Self AJ, van Oers C, Hall A. Identification of distinct cytoplasmic targets for Ras and Rho regulatory proteins. J Biol Chem 1989; 264:10–13.

    PubMed  CAS  Google Scholar 

  11. Lancaster CA, Taylor-Harris PM, Self AJ, Brill S, van Erp HE, Hall A. Characterization of Rho GAP. A GAP for Rho-related small GTPases. J Biol Chem 1994; 269:1137–1142.

    PubMed  CAS  Google Scholar 

  12. Lamarche N, Hall A. GAPs for Rho-related GTPases. TIG 1994; 10:436–440.

    Article  PubMed  CAS  Google Scholar 

  13. Settleman J, Albright CF, Foster LC, Weinberg RA. Association between GTPase activators for Rho and Ras families. Nature 1992; 359:153–154.

    Article  PubMed  CAS  Google Scholar 

  14. Kikuchi A, Sasaki T, Araki S, Hata Y, Takai Y. Purification and characterization from bovine brain cytosol of two GAPs specific for raplA G protein having the same effector domain as Ras. J Biol Chem 1989; 264:9133–9136.

    PubMed  CAS  Google Scholar 

  15. Rubinfeld B, Munemitsu S, Clark R, Conroy L, Watt K, Crosier Wj, McCormick F, Polakis P. Molecular cloning of a GAP specific for rapl. Cell 1991; 69:1033–1042.

    Article  Google Scholar 

  16. Xu G, O’Connell P, Viskochil D, Cawthorn R, Robertson M, Culver M, Dunn D, Stevens J, Gesteland R, White R, Wiess R. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 1992; 62:599–608.

    Article  Google Scholar 

  17. Martin G, Viskochil D, Bollag G, McCabe PC, Crosier W, Haubruck H, Conroy L, Clark R, O’Connell P, Cawthorn R, Innis MA, McCormick F. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with Ras. Cell 1990; 63:843–849.

    Article  PubMed  CAS  Google Scholar 

  18. Xu G, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Wiess R, Tamanoi F. The catalytic domain of the neurofibromatosis type gene product stimulates Ras GTPase and complements Ira mutants of S. cerevisiae. Cell 1990; 63:835–841.

    Article  PubMed  CAS  Google Scholar 

  19. Nur-E-Kamal MSA, Varga M, Maruta H. The GTPase-activating NF1 fragment of 91 amino acids reverses v-Ha-Ras-induced malignant phenotype. J Biol Chem 1993; 268:22331–22337.

    PubMed  CAS  Google Scholar 

  20. Fridman M, Tikoo A, Varga M, Murphy A, Nur-E-Kamal MSA, Maruta H. The Minimal fragments of c-Raf-1 and NF1 that can suppress v-Ha-Ras-induced malignant phenotype. J Biol Chem 1994; 269:30105–30108.

    PubMed  CAS  Google Scholar 

  21. DeClue JE, Papageorge AG, Fletcher JA, Diehl SR, Ratner N, Vass WC, Lowy DR. Abnormal regulation of mammalian Ras contributes to malignant tumor growth in type 1 neurofibromatosis. Cell 1992; 69:265–273.

    Article  PubMed  CAS  Google Scholar 

  22. Basu TN, Gutman DH, Fletcher JA, Glover TW, Collins FS, Downward J. Aberrant regulation of Ras proteins in malignant tumor cells from type 1 neurofibromatosis patients. Nature 1992; 356:713–715.

    Article  PubMed  CAS  Google Scholar 

  23. Frech M, John J, Pizon V, Chardin P, Tavitian A, Clark R, McCormick F, Wittinghofer A. Inhibition of GAP stimulation of Ras GTPase by Rap 1. Science 1990; 249:169–171.

    Article  PubMed  CAS  Google Scholar 

  24. Hata Y, Kikuchi A, Sasaki T, Schaber MD, Gibbs JB, Takai Y. Inhibition of GAP-stimulated Ras GTPase activity by rapl. J Biol Chem 1990; 265:7104–7107.

    PubMed  CAS  Google Scholar 

  25. Holden J, Nur-E-Kamal MSA, Fabri L, Nice E, Hammacher A, Maruta H. Rsrl and rapl GTPases are activated by the same GAP and require Thr65 for their activation. J Biol Chem 1991; 266:16992–16995.

    PubMed  CAS  Google Scholar 

  26. Nur-E-Kamal MSA, Maruta H. The role of Gln6l and Glu63 of Ras GTPases in their activation by NF1 and Ras GAP. Mol Biol Cell 1992; 3:1437–1442.

    PubMed  CAS  Google Scholar 

  27. Nur-E-Kamal MSA, Sizeland A, D’Abaco G, Maruta H. Asp26, Glu31, Val45 and Tyr64 of Ras proteins are required for their oncogenicity. J Biol Chem 1992; 267:1415–1418.

    PubMed  CAS  Google Scholar 

  28. Morii N, Kumagai N, Nur-E-Kamal MSA, Narumiya S, Maruta H. Rho GAP of 28 kDa (GAP2), but not of 190 kDa (pl90), requires Asp65 and Asp67 of Rho GTPase for its activation. J Biol Chem 1993; 268: 27160–27163.

    PubMed  Google Scholar 

  29. Maekawa M, Nakamura S, Hattori S. Purification of a novel GAP from rat brain. J Biol Chem 1993; 268:22948–22952.

    PubMed  CAS  Google Scholar 

  30. Maekawa M, Li S, Iwamatsu A, Morishita T, Yokota K, Imai Y, Kohsaka S, Nakamura S, Hattori S. A novel Ras GAP which has phospholipid-binding and BTK homology regions. Mol Cell Biol 1994; 14:6879–6885.

    PubMed  Google Scholar 

  31. Cullen PJ, Hsuan JJ, Truong O, Letcher AJ, Jackson TR, Dawson AP, Irving RF. Identification of a specific Ins (l,3,4,5)P4-binding protein as a member of the GAP1 family. Nature 1995; 376: 527–530.

    Article  PubMed  CAS  Google Scholar 

  32. Hu DC, Kariya K, Tamada M, Akasaka K, Shirouzu M, Yokoyama S, Kataoka T. Cys-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. J Biol Chem 1995; 270:30274–30277.

    Article  PubMed  CAS  Google Scholar 

  33. Warne PH, Viciana PR, Downward J. Direct interaction of Ras and the N-terminal region of Raf-1 in vitro. Nature 1993; 364:352–355.

    Article  PubMed  CAS  Google Scholar 

  34. Maruta H, Burgess AW. RAS*—a common cancerous gene. Today’s Life Science 1992; 4 (8): 24–32.

    Google Scholar 

  35. Bos JL. Ras oncogenes in human cancer: A review. Cancer Res 1989; 49:4682–4689.

    PubMed  CAS  Google Scholar 

  36. Barbacid M. Ras genes. Annu Rev Biochem 1987; 56:779–827.

    Article  CAS  Google Scholar 

  37. Lowy DR, Willumsen BM. Function and regulation of Ras. Annu Rev Biochem 1993; 62:851–891.

    Article  PubMed  CAS  Google Scholar 

  38. Gibbs JB, Schaber MD, Schofield TL, Scolnick EM, Sigal IS. Xenopus oocyte germinal-vesicle breakdown induced by Vall2-Ras is inhibited by a cytosol-localized Ras mutant. Proc Natl Acad Sci USA 1989; 86:6630–6634.

    Article  PubMed  CAS  Google Scholar 

  39. Sigal IS, Gibbs JB, D’Alonzo JS, Scolnick EM. Identification of effector residues and a neutralizing epitope of Ha-Ras. Proc Natl Acad Sci USA 1986; 83:4725–4729.

    Article  PubMed  CAS  Google Scholar 

  40. Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M. A Ras-related gene with transformation suppressor activity. Cell 1989; 56:77–84.

    Article  PubMed  CAS  Google Scholar 

  41. Pizon V, Chardin P, Lerosey I, Olofsson B, Tavitian A. Human cDNA Rapl and Rap2 homologous to the Drosophila gene DRAS3 encode proteins closely related to Ras in the effector region. Oncogene 1988; 3:201–204.

    PubMed  CAS  Google Scholar 

  42. Kitayama H, Matsuzaka T, Ikawa Y, Noda M. Genetic analysis of Rapl: potentiation of its tumor suppressor activity by specific point mutations. Proc Natl Acad Sci USA 1990; 87:4284–4288.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang K, Noda M, Vass WC, Papageorge AG, Lowr DR. Identification of small clusters of divergent amino acids that mediate the opposing effects of Ras and Rapl. Science 1990; 249:162–165.

    Article  PubMed  CAS  Google Scholar 

  44. Prendergast GC, Gibbs JB. Ras regulatory interactions: Novel targets for anti-cancer intervention? BioEssays 1994; 16:187–191.

    Article  PubMed  Google Scholar 

  45. Maruta H, Burgess AW. Regulation of the Ras signaling network. BioEssays 1994; 16:489–496.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J. Normal and oncogenic Ras proteins bind to the N-terminal regulatory domain of c-Raf-1. Nature 1993; 364:308–313.

    Article  PubMed  CAS  Google Scholar 

  47. Vojtek AB, Hollenberg SM, Cooper JA. Mammalian Ras interacts directly with the Ser/Thr kinase Raf. Cell 1993; 74:205–214.

    Article  PubMed  CAS  Google Scholar 

  48. Yamamori B, Kuroda S, Shimizu K, Fukui K, Ohtsuka T, Takai Y. Purification of a REKS from bovine brain cytosol and its identification as a complex of B-Raf and 14.3.3. J Biol Chem 1995; 270:11723–11726.

    Article  PubMed  CAS  Google Scholar 

  49. Mark GF, Maclntyre RJ, Digan ME, Ambrosio L, Perrimon N. Drosophila homologue of the Raf oncogene. Mol Cell Biol 1987; 7:2134–2140.

    PubMed  CAS  Google Scholar 

  50. Jansen HW, Lurz R, Bister K, Bonner TI, Mark GE, Rapp UR. Homologous cell-derived oncogenes in avian carcinoma virus MH2 and murine sarcoma virus 3611. Nature 1984; 307:281–284.

    Article  PubMed  CAS  Google Scholar 

  51. Rapp UR. Role of Raf-1 Ser/Thr kinase in growth factor signal transduction. Oncogene 1991; 6:495–500.

    PubMed  CAS  Google Scholar 

  52. Daum G, Eisenmann-Tappe I, Fries HW, Troppmair J, Rapp UR. The ins and outs of Raf kinases. Trends in Biochem Soc 1994; 19:474–480.

    Article  CAS  Google Scholar 

  53. Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UR, Avruch J. Raf-1 activates MAP kinase-kinase. Nature 1992; 358:417–421.

    Article  PubMed  CAS  Google Scholar 

  54. McCormick F. Raf: the Holy Grail of Ras biology? Trends in Cell Biol 1994; 4:3347–350.

    Article  Google Scholar 

  55. Cowley S, Paterson H, Kemp P, Marshall CJ. Activation of MEK is necessary and sufficient for PC 12 differentiation and for transformation of NIH/3T3 cells. Cell 1994; 77:841–852.

    Article  PubMed  CAS  Google Scholar 

  56. Stokoe D, MacDonald SG, Cadwallader K, Symons M, Hancock JF. Activation of Raf as a result of recruitment to the plasma membranes. Science 1994; 264:1463–1467.

    Article  PubMed  CAS  Google Scholar 

  57. Leevers SJ, Paterson HF, Marshall CJ. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membranes. Nature 1994; 369; 411–414.

    Article  PubMed  CAS  Google Scholar 

  58. Qiu RG, Che J, Kirn D, McCormick F, Symons M. An essential role for Rac in Ras transformation. Nature 1995; 374:457–459.

    Article  PubMed  CAS  Google Scholar 

  59. Beranger F, Goud B, Tavitian A, de Gunzburg J. Association of rapl with the Golgi complex. Proc Natl Acad Sci USA 1991; 88:1601–1610.

    Article  Google Scholar 

  60. Therrien M, Chang HC, Solomom NM, Karim FD, Wassarman DA, Rubin GM. KSR, a novel protein kinase required for RAS signal transduction. Cell 1995; 83:879–888.

    Article  PubMed  CAS  Google Scholar 

  61. Stanton VP, Nichols DW, Laudano AP, Cooper GM. Definition of the human Raf N-terminal regulatory region by deletion mutagenesis. Mol Cell Biol 1989; 9:639–647.

    PubMed  CAS  Google Scholar 

  62. Fabian JR, Daar IO, Morrison DK. Critical Tyr residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol Cell Biol 1993; 13:7170–7179.

    PubMed  CAS  Google Scholar 

  63. Fabian JR, Vojtek AB, Cooper JA, Morrison DK. A single amino acid change in Raf-1 inhibits Ras binding and alters Raf-1 function. Proc Natl Acad Sci USA 1994; 91:5982–5986.

    Article  PubMed  CAS  Google Scholar 

  64. Melnick MB, Perkins LA, Lee M, Ambrosio L, Perrimon N. Developmental and molecular characterization of mutations in the Drosophila Raf Ser/Thr kinase. Development 1993; 118:127–138.

    PubMed  CAS  Google Scholar 

  65. Barnard D, Diaz B, Hettich L, Chuang E, Zhang ZF, Avruch J, Marshall M. Identification of the sites of interaction between Raf and Ras-GTP. Oncogene 1995; 10:1283–1290.

    PubMed  CAS  Google Scholar 

  66. Nassar N, Horn G, Herrmann C, Scherer A, McCormick F, Wittinghofer A. The 2.2 A crystal structure of the RAS binding domain of the Ser/Thr kinase Raf in complex with raplA and a GTP analogue. Nature 1995; 375:554–560.

    Article  PubMed  CAS  Google Scholar 

  67. Shirouzu M, Koide H, Fujita-Yoshigaki J, Oshio H, Toyama Y, Yamazaki K, Fuhrman SA, Villafranca E, Kaziro Y, Yokoyama S. Mutations that abolish the ability of Ha-Ras to associate with Raf. Oncogene 1994; 9:2153–2157.

    PubMed  CAS  Google Scholar 

  68. Hiles ID, Otsu M, Volinia S, Fry MJ, Gout I, Dhand R, Panayotou G, Ruiz-Larrea F, Thompson A, Totty NF, Hsuan JJ, Courtneidge SA, Parker PJ, Waterfield MD. Phosphatidylinositol 3-kinase: structure and expression of the pl 10 catalytic subunit. Cell 1992; 70:419–429.

    Article  PubMed  CAS  Google Scholar 

  69. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J. Pi-3 kinase as a direct target of Ras. Nature 1994; 370:527–532.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang QX, Davis ID, Baldwin GS. Controlled overexpression of selected domains of the p85 subunit of PI-3 kinase reverses v-Ha-Ras transformation. Biochim Biophys Acta 1996; (in press).

    Google Scholar 

  71. Martin GA, Yatani A, Clark R, Conroy L, Polakis P, Brown AM, McCormick F. GAP domains responsible for Ras-dependent inhibition of muscarinic atrial K+ channel currents. Science 1992; 255:192–194.

    Article  PubMed  CAS  Google Scholar 

  72. Henkemeyer M, Rossi DJ, Holmyard DP, Puri MC, Mbamalu G, Harpal K, Shih TS, Jacks T, Pawson T. Vascular system defects and neuronal apoptosis in mice lacking Ras GAP. Nature 1995; 377:695–701.

    Article  PubMed  CAS  Google Scholar 

  73. McGlade J, Brunkhorst B, Anderson D, Settleman J, Dedhar S, Rozakis-Adock M, Chen LB, Pawson T. The N-terminal region of GAP regulates cytoskeletal structure and cell adhesion. EMBO J 1992; 12:3073–3081.

    Google Scholar 

  74. Chang JS, Kobayashi M, Wang DZM, Maruta H, Iwashita S. Two regions with differential growth-modulating activity in the N-terminal domain of Ras GAP: Src homology and Gly-Ala-Pro-rich regions. Eur J Biochem 1995; 232:691–699.

    Article  PubMed  CAS  Google Scholar 

  75. Duchesne M, Schweighoffer F, Parker F, Clerc F, Frobert Y, Thang MN, Tocque B. Identification of the SH3 domain of GAP as an essential sequence for Ras-GAP-mediated signaling. Science 1993; 259:525–528.

    Article  PubMed  CAS  Google Scholar 

  76. Zhao JF, Nakano H, Sharma S. Suppression of RAS and MOS transformation by radicicol. Oncogene 1995; 11:161–173.

    PubMed  CAS  Google Scholar 

  77. Pronk GJ, de Vries-Smits AMM, Ellis C, Bos JL. Complex formation between Ras GAP and phosphoproteins p62 and pi90 is independent of Ras signaling. Oncogene 1993; 8:2773–2780.

    PubMed  CAS  Google Scholar 

  78. Foster R, Hu KQ, Shaywitz DA, Settleman J. pi90 Rho GAP, the major Ras GAP-associated protein, binds GTP directly. Mol Cell Biol 1994; 14:7173–7181.

    PubMed  Google Scholar 

  79. Lebowitz PF, Davide JP, Prendergast GC. Evidence that farnesyl-trans-ferase inhibitors suppress Ras transformation by interfering with Rho activity. Mol Cell Biol 1995; 15:6613–6622.

    PubMed  CAS  Google Scholar 

  80. Coso OA, Chiariello M, Yu JC, Teramoto H, Crespo P, Xu N, Miki T, Gutkind JS. The small G proteins Racl and CDC42 regulate the activity of the JNK/SAPK signaling pathway. Cell 1995; 81:1137–1146.

    Article  PubMed  CAS  Google Scholar 

  81. Minden A, Lin A, Claret FX, Abo A, Karin M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and CEC42. Cell 1995; 81:1147–1157.

    Article  PubMed  CAS  Google Scholar 

  82. Hill CS, Wynne J, Treisman R. The Rho family GTPases RhoA, Racl and CDC42 regulate transcriptinal activation by SRF. Cell 1995; 81:1159–1170.

    Article  PubMed  CAS  Google Scholar 

  83. Ono Y, Fujii T, Ogita K, Kikkawa U, Igarashi K, Nishizuka Y. Protein kinase C Ç-subspecies from rat brain: its structure, expression and properties. Proc Natl Acad Sci USA 1989; 86:3099–3103.

    Article  PubMed  CAS  Google Scholar 

  84. Dominguez I, Diaz-Meco MT, Municio MM, Berra E, de Herreros GA, Cornet ME, Sanz L, Moscat J. Evidence for a role of protein kinase C ζ-subspecies in maturation of Xenopus oocytes. Mol Cell Biol 1992; 12:3776–3783.

    PubMed  CAS  Google Scholar 

  85. Diaz-Meco MT, Lozano J, Municio MM, Berra E, Frutos S, Sanz L, Moscat J. Evidence for the in vitro and in vivo interaction off Ras with protein kinase C- ζ. J Biol Chem 1994; 269:31706–31710.

    PubMed  CAS  Google Scholar 

  86. Bjoerkoey G, Oevervatn A, Diaz-Meco MT, Moscat J, Johansen T. Evidence for a bifurcation of the mitogenic signaling pathway activated by Ras and PC-PLase C. J Biol Chem 1995; 270: 21299–21306.

    Article  CAS  Google Scholar 

  87. Chardin P, Tavitian A. Coding sequences of human RalA and RalB cDNAs. Nucleic Acids Res 1989; 17:4380.

    Article  PubMed  CAS  Google Scholar 

  88. Olofsson B, Chardin P, Touchot N, Zahraoui A, Tavitian A. Expression of the Ras-related RalA, Rho 12 and Rab genes in adult mouse tissues. Oncogene 1988; 3:231–234.

    PubMed  CAS  Google Scholar 

  89. Albright CF, Giddings BW, Liu J. Vito M, Weinberg RA. Characterization of a GDP-dissociation stimulator for a Ras-related GTPase (Ral). EMBO J 1993; 12:339–347.

    PubMed  CAS  Google Scholar 

  90. Kikuchi A, Demo SD, Ye ZH, Chen YW, Williams LT. RalGDS family members interact with the effector loop of Ras. Mol Cell Biol 1994; 14:7483–7491.

    PubMed  CAS  Google Scholar 

  91. Hofer F, Fields S, Schneider C, Martin GS. Activated Ras interacts with the Ral GDS. Proc Natl Acad Sci USA 1994; 91: 11089–11093.

    Article  PubMed  CAS  Google Scholar 

  92. Urano T, Emkey R, Feig LA. Ral GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J 1996; 15:810–816.

    PubMed  CAS  Google Scholar 

  93. Jiang H, Luo JQ, Urano T, Frankel P, Lu Z, Foster DA, Feig LA. Involvement of Ral GTPase in v-Src-induced phospholipase D activation. Nature 1995; 378:409–412.

    Article  PubMed  CAS  Google Scholar 

  94. Carnero A, Cuadrado A, de Peso L, Lacal JC. Activation of type D phos-pholipase by serum stimulation and Ras-induced transformation in NIH/ 3T3 cells. Oncogene 1994; 9:1387–1395.

    PubMed  CAS  Google Scholar 

  95. Cantor SB, Urano T, Feig LA. Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol Cell Biol 1995; 15:4578–4584.

    PubMed  CAS  Google Scholar 

  96. Jullien-Flores V, Dorseuil O, Romero F, Letourneur F, Saragosti S, Berger R, Tavitian A, Gacon G, Camonis JH. Bridging Ral GTPase to Rho Pathways. RLIP76, a Ral effector with CDC42/Rac GAP activity. J Biol Chem 1995; 270:22473–22477.

    Article  PubMed  CAS  Google Scholar 

  97. Park SH, Weinberg RA. A putative effector of Ral has homology to Rho/ Rac GAPs. Oncogene 1995; 11:2349–2355.

    PubMed  CAS  Google Scholar 

  98. Weber K, Lazarides E, Goldman RD, Vogel A, Pollack R. Localization and distribution of actin fibers in normal, transformed and revertant cells. Cold Spring Harbor Symp Quant Biol 1974; 39:363–369.

    Google Scholar 

  99. Pollard TD, Cooper JA. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 1986; 55: 987–1035.

    Article  PubMed  Google Scholar 

  100. Fernandez JLR, Geiger B, Salomon D, Sabanay I, Zoeller M, Ben-Ze’ev A. Suppression of tumorigenicity in SV40-transformed cells after trans-fection with vinculin cDNA. J Cell Biol 1992; 119: 427–438.

    Article  Google Scholar 

  101. Glueck U, Kwiatkowski D, Ben-Ze’ev A. Supression of tumorigenicity in SV40-transformed 3T3 cells transfected with cc-actinin cDNA. Proc Natl Acad Sci USA 1993; 90:383–387.

    Article  Google Scholar 

  102. Vandekerckhove J, Bauw G, Vancompernolle A, Honore B, Celis J. Comparative two-dimensional gel analysis and microsequencing identifies gelsolin as one of the most prominent down-regulated markers of transformed human fibroblast and epithelial cells. J Cell Biol 1990; 111:95–102.

    Article  PubMed  CAS  Google Scholar 

  103. Muellauer L, Fujita H, Shizaki A, Kuzumaki N. Tumor-suppressive function of mutated gelsolin in Ras-transformed cells. Oncogene 1993; 8:2531–2536.

    Google Scholar 

  104. Yin HL. Gelsolin: calcium and polyphosphoinositide-regulated actin modulating protein. BioEssays 1987; 7:176–179.

    Article  PubMed  CAS  Google Scholar 

  105. Tikoo A, Varga M, Ramesh V, Guesella J, Maruta H. An anti-Ras function of neurofibromatosis type 2 gene product (NF2/Merlin). J Biol Chem 1994; 269:23387–23390.

    PubMed  CAS  Google Scholar 

  106. Tikoo A, Lo SH, Chen LB, Moriyama K, Yahara I, Maruta H. Tensin, cofilin mutants and cytochalasins block an oncogenic Ras signaling by capping the barbed end of actin filament. Cancer Res 1996; (submitted).

    Google Scholar 

  107. He H, Watanabe T, Maruta H. Human HSl (hemotopoiesis specific) requires both its SH3 domain and F-actin binding domain for a tumor suppressor activity. Cell 1996; (submitted).

    Google Scholar 

  108. Lo SH, Weisberg E, Chen LB. Tensin: a potential link between the cytoskeleton and signal transduction. BioEssays 1994; 16:817–823.

    Article  PubMed  CAS  Google Scholar 

  109. Maruta H, He H. Cytoskeletal SH3 proteins. Biochemistry (Tokyo) 1995; 67:1210–1217.

    CAS  Google Scholar 

  110. Fankhauser C, Reymond A, Cerutti L, Utzig S, Hofmann K, Simanis V. The S. pombe CDC 15 gene is a key element in the regulation of F-actin at mitosis. Cell 1995; 82:435–444.

    Article  PubMed  CAS  Google Scholar 

  111. Taniuchi I, Kitamura D, Maekawa Y, Fukuda T, Kishi H, Watanabe T. Antigen-receptor induced clonal expansion and deletion of lympho-cytes are impaired in mice lacking HS1, a substrate of the antigen-receptor-coupled Tyr kinases. EMBO J 1995; 14; 3664–3678.

    PubMed  CAS  Google Scholar 

  112. Kariya K, Kataoka T. RAS proteins in S. cerevisiae. Exp Med (Tokyo) 1996; 14:259–260.

    CAS  Google Scholar 

  113. Orloff GJ, Allen PG, Miklos GLG, Young IG, Campbell HD, Kwiatkowski DJ. Human flightless-I has actin binding ability. 1996; (submitted).

    Google Scholar 

  114. Minato T, Wang J, Akasaka K, Okada T, Suzuki N, Kataoka T. Quantitative analysis of mutually competitive binding of human Raf and yeast adenylate cyclase to Ras. J Biol Chem 1994; 269:20845–20851.

    PubMed  CAS  Google Scholar 

  115. Campbell HD, Schimanski T, Claudianos C, Ozsarac N, Kasprzak AB, Costell JN, Young IG, De Couet HG, Miklos GLG. The Drosophila flightless-I gene involved in gastrulation and muscle degeneration encodes gelsolin-like and Leu-rich repeat domains and is conserved in C. elegans and humans. Proc Natl Acad Sci USA 1993; 90:11386–11390.

    Article  PubMed  CAS  Google Scholar 

  116. Chen KS, Gunaratne PH, Hoheisel JD, Young IG, Miklos GLG, Greenberg F, Shaffer LG, Campbell HD, Lupski JR. The human homologue of the drosophila flightless-I gene maps within the Smith-Magenis microdeletion critical region in 17pll.2. Am J Hum Genet 1995; 56:175–182.

    PubMed  CAS  Google Scholar 

  117. Ridley AJ, Paterson HF, Johnson CL, Diekman D, Hall A. Rac regulates growth factor-induced membrane ruffling. Cell 1992; 70:401–410.

    Article  PubMed  CAS  Google Scholar 

  118. Downward J, de Gunzburg J, Riehl R, Weinberg RA. Ras-induced responsiveness of phosphatidylinositol turnover to bradykinin is a receptor number effect. Proc Natl Acad Sci USA 1988; 85: 5774–5778.

    Article  PubMed  CAS  Google Scholar 

  119. Kozma R, Ahmed S, Best A, Lim L. CDC42 and bradykinin promote formation of peripheral microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 1995; 15:1942–1952.

    PubMed  CAS  Google Scholar 

  120. Ridley AJ. Membrane ruffling and signal transduction. BioEssays 1994; 16:321–327.

    Article  PubMed  CAS  Google Scholar 

  121. Khosravi-Far R, Solski PA, Clark GJ, Kinch MS, Der CJ. Activation of Racl, RhoA and MAP kinase is required for Ras transformation. Mol Cell Biol 1995; 15:6443–6453.

    PubMed  CAS  Google Scholar 

  122. Ridley AJ, Hall A. Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70:389–399.

    Article  PubMed  CAS  Google Scholar 

  123. Reinhard J, Scheel AA, Diekmann D, Hall A, Ruppert C, Baehler M. A novel type of myosin implicated in signaling by Rho family GTPases. EMBO J 1995; 14:697–704.

    PubMed  CAS  Google Scholar 

  124. Pollard TD, Doberstein SK, Zot HG. Myosin I. Annu Rev Physiol 1991; 51:653–681.

    Article  Google Scholar 

  125. Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A, Stossel TP. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 1995; 82:643–653.

    Article  PubMed  CAS  Google Scholar 

  126. Moriyama K, Yonezawa N, Sakai H, Yahara I, Nishida E. Mutational analysis of an actin-binding site of cofilin and characterization of chimeric cofilin/destrin proteins. J Biol Chem 1992; 267: 7240–7244.

    PubMed  CAS  Google Scholar 

  127. Yahara I, Harada F, Sekita S, Yoshihira K, and Natori S. Correlation between effects of 24 different cytochalasins on cellular structures and events and those on actin in vitro. J Cell Biol 1982; 92:69–78.

    Article  PubMed  CAS  Google Scholar 

  128. Buettner R, Yim SO, Hong YS, Boncinelli E, Tainsky M. Alteration of homeobox gene expression by N-Ras transformation of PA-1 human teratocarcinoma cells. Mol Cell Biol 1991; 11:3573–3583.

    PubMed  CAS  Google Scholar 

  129. Yoshida M, Horinouchi S, Beppu T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. BioEssays 1995; 17:423–430.

    Article  PubMed  CAS  Google Scholar 

  130. Sugita K, Koizumi K, Yoshida H. Morphological reversion of Sis-transformed NIH/3T3 cells by trichostatin A. Cancer Res 1992; 52:168–172.

    PubMed  CAS  Google Scholar 

  131. Futamura M, Monden Y, Okabe T, Fujita-Yoshigaki J., Yokoyama S, Nishimura S. Trichostatin A inhibits both Ras-induced neurite outgrowth of PCI2 cells and morphological transformation of NIH/3T3 cells. Oncogene 1995; 10:1119–1123.

    PubMed  CAS  Google Scholar 

  132. Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells is related to EGF. Science 1991; 251:936–939.

    Article  PubMed  CAS  Google Scholar 

  133. Schweitzer R, Howes R, Smith R, Shilo BZ, Freeman M. Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 1995; 376:699–702.

    Article  PubMed  CAS  Google Scholar 

  134. Sekine A, Fujiwara M, Narumiya S. Asp residue in the Rho is the modification site for Botulinum ADP-ribosyltransferase C3. J Biol Chem 1989; 264:8602–8605.

    PubMed  CAS  Google Scholar 

  135. Groenen LC, Nice EC, Burgess AW. Structure-function relationships for the EFG/TGF-α family of mitogens. Growth Factors 1994; 11:235–257.

    Article  PubMed  CAS  Google Scholar 

  136. McCarthy SA, Samuels ML, Pritchard CA, Abraham JA, McMahon M. Rapid induction of HB-EGF/diphtheria toxin receptor expression by Raf and RAS oncogenes. Genes & Dev 1995; 9:1953–1964.

    Article  CAS  Google Scholar 

  137. Grugel S, Finkenzeller G, Weindel K, Barleon B, Marme D. Both v-Ha-Ras and v-Raf stimulate expression of the VEGF in NIH/3T3 cells. J Biol Chem 1995; 270:25915–21919.

    Article  PubMed  CAS  Google Scholar 

  138. Dlugosz AA, Cheng C, Williams EK et al. Autocrine TGF-α is dispensable for v-Ha-Ras-induced epidermal neoplasia: potential involvement of alternative EGF receptor ligands. Cancer Res 1995; 55:1883–1893.

    PubMed  CAS  Google Scholar 

  139. Naglich JG, Metherall JE, Russell DW, Eideis L. Expression cloning of a diphtheria toxin receptor: identity with an HB-EGF precurson. Cell 1992; 69:1051–1061.

    Article  PubMed  CAS  Google Scholar 

  140. Mitamura T, Higashiyama S, Taniguchi N, Klagsbrun M, Mekada E. Diphtheria toxin (DT) binds to the EGF-like domain of human HB-EGF/DT receptor and inhibits specifically its mitogenic activity. J Biol Chem 1995; 270:1015–1019.

    Article  PubMed  CAS  Google Scholar 

  141. Goishi K, Higashiyama S, Klagsbrun M, Nakano N, Umata T, Ishikawa M, Mekada E, Taniguchi N. Phorbol ester induces the rapid processing of celll surface HB-EGF: conversion from juxtacrine to paracrine growth factor activity. Mol Biol Cell 1995; 6:967–980.

    PubMed  CAS  Google Scholar 

  142. Buzzi S, Maistrello I. Inhibition of growth of Ehrlich tumors in Swiss Mice by diphtheria toxin. Cancer Res 1973; 33:2349–2353.

    PubMed  CAS  Google Scholar 

  143. Mayer U, Nuesslein-Volhard C. A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryos. Genes & Dev 1988; 2:1496–1511.

    Article  CAS  Google Scholar 

  144. Rutledge B, Zhang K, Bier E, Jan YN, Perrimon N. The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes & Dev 1992; 6:1503–1517.

    Article  CAS  Google Scholar 

  145. Freeman M, Klaembt C, Goodman CS, Rubin GM. The Argos gene encodes a diffusible factor that regulates cell fate decision in the Drosophila eye. Cell 1992; 69:963–975.

    Article  PubMed  CAS  Google Scholar 

  146. Kretzschmar D, Brunner A, Wiersdorff V, Pflugfelder GO, Heisenberg M, Schneuwly S. Giant lens, a gene involved in cell determination and axon guidance in the visual system of Drosophila. EMBO J 1992; 11:2531–2539.

    PubMed  CAS  Google Scholar 

  147. Yamamoto T, Matsui T, Nakafuku M, Iwamatsu A, Kaibuchi K. A novel GAP for R-Ras. J Biol Chem 1995; 270:30557–30561.

    Article  PubMed  CAS  Google Scholar 

  148. Kumar CC, Chang C. Human smooth muscle myosin light chain-2 gene expression is repressed in Ras transformed fibroblast cells. Cell Growth & Differ 192; 3:1–10.

    Google Scholar 

  149. Konieczny SF, Drobes BL, Menke SL, Taparowsky EJ. Inhibition of myogenic differentiation by the H-Ras ioncogene is associated with the down regulation of the MyoDl gene. Oncogene 1989; 4:473–481.

    PubMed  CAS  Google Scholar 

  150. Lassar AB, Thayer MJ, Overell RW, Weintraub H. Transformation by activated Ras or Fos prevents myogenesis by inhibiting expression of MyoDl. Cell 1989; 58:659–667.

    Article  PubMed  CAS  Google Scholar 

  151. Awedimento VE, Musti AM, Ueffing M. et al. Reversible inhibition of a thyroid-specific trans-acting factor by Ras. Gene & Develop 1991; 5:22–28.

    Article  Google Scholar 

  152. Krzyzosiak WJ, Shindo-Okada N, Teshima H, Nakajima K, Nishimura S. Isolation of genes specifically expressed in flat revenant cells derived from Ras-transformed NIH 3T3 cells by treatment with azatyrosine. Proc Natl Acad Sci USA 1992; 89: 4879–4883.

    Article  PubMed  CAS  Google Scholar 

  153. Contente S, Kenyon K, Rimoldi D, Friedman RM. Expression of gene RRG is associated with reversion of NIH 3T3 cells by LTR-c-Ha-Ras. Science 1990; 249:796–798.

    Article  PubMed  CAS  Google Scholar 

  154. Sugimoto Y, Ikawa, Y, Nakauchi H. Thy-1 as a negative regulator in Ras-transformed mouse fibroblasts. Cancer Res 1991; 51:99–104.

    PubMed  CAS  Google Scholar 

  155. Lin X, Nelson PJ, Frankfort B et al. Isolation and characterization of a novel mitogenic regulatory gene, 322, which is transcriptionally suppressed in cells transformed by Src and Ras. Mol Cell Biol 1995; 15:2754–2762.

    PubMed  CAS  Google Scholar 

  156. Glick AB, Sporn MB, Yuspa SH. Altered regulation of TGF-βl and TGF-α in primary keratinocytes and papillomas expressing v-Ha-Ras. Mol Carcinog 1991; 4:210–219.

    Article  PubMed  Google Scholar 

  157. Normanno N, Selvam MP, Qi CF et al. Amphiregulin as an autocrine growth factor for c-Ha-Ras/c-ErbB-2-transformed human mammary epithelial cells. Proc Natl Acad Sci USA 1994; 91:2790–2794.

    Article  PubMed  CAS  Google Scholar 

  158. Liang P, Averboukh L, Zhu W, Pardee AB. Ras activation of genes: Mob-1 as a model. Proc Natl Acad Sci USA 1994; 91:12515–12519.

    Article  PubMed  CAS  Google Scholar 

  159. Winston JT, Coats SR, Wang YZ, Pledger WJ. Regulation of cell cycle machinery by oncogenic RAS. Oncogene 1996; 12:127–134.

    PubMed  CAS  Google Scholar 

  160. Medema RH, Wubbolts R, Bos JL. Two dominant inhibitory mutants of Ras interfere with insulin-induced gene expression. Mol Cell Biol 1991; 11:5963–5967.

    PubMed  CAS  Google Scholar 

  161. Cornwell MM, Smith DE. A signal transduction pathway for activation of the MDR1 promoter involves the c-Raf-1. J Biol Chem 1993; 268:15347–15350.

    PubMed  CAS  Google Scholar 

  162. Lin CQ, Dempsey PJ, Coffey RJ, Bisseil MJ. Extracellular matrix regulates whey acidic protein gene expression by suppression of TGF-α in mouse mammary epithelial cells: studies in culture and in transgenic mice. J Cell Biol 1995; 129:1115–1126.

    Article  PubMed  CAS  Google Scholar 

  163. Hajnal A, Klemenz R, Schaefer R. Substraction cloning of H-Revl07, a gene specifically expressed in H-Ras resistant fibroblasts. Oncogene 1994; 9:479–490.

    PubMed  CAS  Google Scholar 

  164. Kumar CC, Prorock-Rogers C, Kelly J, Dong Z, Lin JJ, Armstrong L, Kung HF, Weber MJ, Afonso A. SCH51344 inhibits Ras transformation by a novel mechanism. Cancer Res 1995; 55:5106–5117.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 R.G. Landes Company

About this chapter

Cite this chapter

Maruta, H. (1996). Mammals II: Downstream of RAS and Actin-Cytoskeleton. In: Regulation of the RAS Signaling Network. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1183-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1183-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8502-1

  • Online ISBN: 978-1-4613-1183-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics