Skip to main content

Prenylation of RAS and Inhibitors of Prenyltransferases

  • Chapter
Regulation of the RAS Signaling Network

Abstract

The recent development of farnesyltransferase inhibitors which inhibit the growth of RAS-transformed cells demonstrates that membrane association of RAS and other monomeric G proteins such as Rho is important for the tumorigenicity of RAS.1–3 In the early 1980s, it was established that RAS is C-terminally modified and that this modification is important for both its membrane association and tumorigenicity. This observation was followed by the elucidation of the steps involved in the C-terminal modification. The first step in this modification is the addition of a farnesyl group to RAS utilizing farnesyl pyrophosphate (FPP) as the prenyl donor. Characterization of the farnesylation led to the identification of the enzyme farnesyltransferase (FTase). This enzyme and two related enzymes, geranylgeranyltransferases (GGTases) I and II, form a family of enzymes called protein prenyl-transferases. The structure and function of these enzymes are being elucidated, which could provide vital information concerning the active sites of the enzyme. Inhibitors of these enzymes have been identified by a variety of approaches, and the inhibitors have been utilized to inhibit the growth of RAS tumors. In this chapter we will focus on two topics: (i) the structure and function of protein prenyltransferases and (ii) inhibitors of prenyltransferases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lowy DR, Willumsen BM. Function and regulation of RAS. Annu Rev Biochem 1993; 62:851–91.

    PubMed  CAS  Google Scholar 

  2. Tamanoi F. Inhibitors of RAS farnesyltransferases. Trends Biochem Sci 1993; 18:349–53.

    PubMed  CAS  Google Scholar 

  3. Gibbs JB, Oliff A, Kohl NE. Farnesyltransferase inhibitors: RAS research yields a potential cancer therapeutic. Cell 1994; 77:175–8.

    PubMed  CAS  Google Scholar 

  4. Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 1996; 65:241–270.

    PubMed  CAS  Google Scholar 

  5. Buss JE, Marsters JC Jr. Farnesyltransferase inhibitors: the successes and surprises of a new class of potential cancer chemotherapeutics. Chem Biol 1995; 2:787–91.

    PubMed  CAS  Google Scholar 

  6. Caldwell GA, Naider F, Becker JM. Fungal lipopeptide mating pheromones: a model system for the study of protein prenylation. Microbiol Rev 1995; 59:406–22.

    PubMed  CAS  Google Scholar 

  7. Omer CA, Gibbs JB. Protein prenylation in eukaryotic microorganisms: genetics, biology and biochemistry. Mol Microbiol 1994; 11:219–25.

    PubMed  CAS  Google Scholar 

  8. Glomset JA, Farnsworth CC. Role of protein modification reactions in programming interactions between RAS-related GTPases and cell membranes. Annu Rev Cell Biol 1994; 10:181–205.

    PubMed  CAS  Google Scholar 

  9. Schafer WR, Rine J. Protein prenylation: genes, enzymes, targets, and functions. Annu Rev Genet 1992; 26:209–37.

    PubMed  CAS  Google Scholar 

  10. Clarke S. Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 1992; 61:355–86.

    PubMed  CAS  Google Scholar 

  11. Fujiyama A, Tamanoi F. Processing and fatty acid acylation of RAS1 and RAS2 proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1986; 83:1266–70.

    PubMed  CAS  Google Scholar 

  12. Farh L, Mitchell DA, Deschenes RJ. Farnesylation and proteolysis are sequential, but distinct steps in the CaaX box modification pathway. Arch Biochem Biophys 1995; 318:113–21.

    PubMed  CAS  Google Scholar 

  13. Fujiyama A, Tsunasawa S, Tamanoi F et al. S-farnesylation and methyl esterification of C-terminal domain of yeast RAS2 protein prior to fatty acid acylation. J Biol Chem 1991; 266:17926–31.

    PubMed  CAS  Google Scholar 

  14. Casey PJ, Solski PA, Der CJ et al. P21RAS is modified by a farnesyl isoprenoid. Proc Natl Acad Sci USA 1989; 86:8323–7.

    PubMed  CAS  Google Scholar 

  15. Hancock JF, Magee AI, Childs JE et al. All RAS proteins are polyisoprenylated but only some are palmitoylated. Cell 1989; 57:1167–77.

    PubMed  CAS  Google Scholar 

  16. Shabinian S, Silvius JR. Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membrane. Biochemistry 1995; 34:3813–22.

    Google Scholar 

  17. Hancock JF, Paterson H, Marshall CJ. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21RAS to the plasma membrane. Cell 1990; 63:133–9.

    PubMed  CAS  Google Scholar 

  18. Ghomashchi F, Zhang X, Liu L et al. Binding of prenylated and polybasic peptides to membranes: affinities and intervesicle exchange. Biochemistry 1995; 34:11910–8.

    PubMed  CAS  Google Scholar 

  19. James GL, Goldstein JL, Brown MS. Polylysine and CVIM sequences of K-RASB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J Biol Chem 1995; 270:6221–6.

    PubMed  CAS  Google Scholar 

  20. Willumsen BM, Christensen A, Hubbert NL et al. The p21 RAS C-terminus is required for transformation and membrane association. Nature 1984; 310:583–6.

    PubMed  CAS  Google Scholar 

  21. Deschenes RJ, Broach JR. Fatty acylation is important but not essential for Saccharomyces cerevisiae RAS function. Mol Cell Biol 1987; 7:2344–51.

    PubMed  CAS  Google Scholar 

  22. Fujiyama A, Matsumoto K, Tamanoi F. A novel yeast mutant defective in the processing of RAS proteins: assessment of the effect of the mutation on processing steps. EMBO J 1987; 6:223–8.

    PubMed  CAS  Google Scholar 

  23. Powers S, Michaelis S, Broek D et al. RAM, a gene of yeast required for a functional modification of RAS proteins and for production of mating pheromone a-factor. Cell 1986; 47:413–22.

    PubMed  CAS  Google Scholar 

  24. Itoh T, Kaibuchi K, Masuda T et al. The post-translational processing of RAS p21 is critical for its stimulation of mitogenactivated protein kinase. J Biol Chem 1993; 268:3025–8.

    PubMed  CAS  Google Scholar 

  25. McGeady P, Kuroda S, Shimizu K et al. The farnesyl group of H-RAS facilitates the activation of a soluble upstream activator of mitogen-activated protein kinase. J Biol Chem 1995; 270:26347–51.

    PubMed  CAS  Google Scholar 

  26. Kuroda Y, Suzuki N, Kataoka T. The effect of posttranslational modifications on the interaction of RAS2 with adenylyl cyclase. Science 1993; 259: 683–6.

    PubMed  CAS  Google Scholar 

  27. Reiss Y, Goldstein JL, Seabra MC et al. Inhibition of purified p21RAS farnesyhprotein transferase by Cys-AAX tetrapeptides. Cell 1990; 62:81–8.

    PubMed  CAS  Google Scholar 

  28. Moores SL, Schaber MD, Mosser SD et al. Sequence dependence of protein isoprenylation. J Biol Chem 1991; 266:14603–10.

    PubMed  CAS  Google Scholar 

  29. Reiss Y, Stradley SJ, Gierasch LM et al. Sequence requirement for peptide recognition by rat brain p21ras protein farnesyltransferase. Proc Natl Acad Sci USA 1991; 88:732–6.

    PubMed  CAS  Google Scholar 

  30. Gomez R, Goodman LE, Tripathy SK et al. Purified yeast protein farnesyltransferase is structurally and functionally similar to its mammalian counterpart. Biochem J 1993; 289:25–31.

    PubMed  CAS  Google Scholar 

  31. Mayer MP, Prestwich GD, Dolence JM et al. Protein farnesyltransferase: production in Escherichia coli and immunoaffinity purification of the heterodimer from Saccharomyces cerevisiae. Gene 1993; 132:41–7.

    PubMed  CAS  Google Scholar 

  32. Moomaw JF, Casey PJ. Mammalian protein geranylgeranyltransferase. Subunit composition and metal requirements. J Biol Chem 1992; 267:17438–43.

    PubMed  Google Scholar 

  33. Yokoyama K, Gelb MH. Purification of a mammalian protein geranylgeranyltransferase. Formation and catalytic properties of an enzyme-geranylgeranyl pyrophosphate complex. J Biol Chem 1993; 268:4055–60.

    PubMed  CAS  Google Scholar 

  34. Finegold AA, Johnson DI, Farnsworth CC et al. Protein geranylgeranyltransferase of Saccharomyces cerevisiae is specific for Cys-Xaa-Xaa-Leu motif proteins and requires the CDC43 gene product but not the DPR1 gene product. Proc Natl Acad Sci USA 1991; 88:4448–52.

    PubMed  CAS  Google Scholar 

  35. Mayer ML, Caplin BE, Marshall MS. CDC43 and RAM2 encode the polypeptide subunits of a yeast type I protein geranylgeranyltransferase. J Biol Chem 1992; 267:20589–93.

    PubMed  CAS  Google Scholar 

  36. Seabra MC, Goldstein JL, Sudhof TC et al. Rab geranylgeranyl transferase. A multisubunit enzyme that prenylates GTP-binding proteins terminating in Cys-X-Cys or Cys-Cys. J Biol Chem 1992; 267:14497–503.

    PubMed  CAS  Google Scholar 

  37. Horiuchi H, Kawata M, Katayama M et al. A novel prenyltransferase for a small GTP-binding protein having a C-terminal Cys-Ala-Cys structure. J Biol Chem 1991; 266:16981–4.

    PubMed  CAS  Google Scholar 

  38. Kinsella BT, Maltese WA. Rab GTP-binding proteins implicated in vesicular transport are isoprenylated in vitro at cysteines within a novel car-boxyl-terminal motif. J Biol Chem 1991; 266:8540–4.

    PubMed  CAS  Google Scholar 

  39. Khosravi-Far R, Clark GJ, Abe K et al. RAS (CXXX) and Rab (CC/CXC) prenylation signal sequences are unique and functionally distinct. J Biol Chem 1992; 267:24363–8.

    PubMed  CAS  Google Scholar 

  40. Jiang Y, Rossi G, Ferro-Novick S. Bet2p and Mad2p are components of a prenyltransferase that adds geranylgeranyl onto Yptlp and Sec4p. Nature 1993; 366:84–6.

    PubMed  CAS  Google Scholar 

  41. Farnsworth CC, Seabra MC, Ericsson LH et al. Rab geranylgeranyl transferase catalyzes the geranylgeranyl at ion of adjacent cysteines in the small GTPases Rab1A, Rab3A, and Rab5A. Proc Natl Acad Sci USA 1994; 91:11963–7.

    PubMed  CAS  Google Scholar 

  42. Andres DA, Seabra MC, Brown MS et al. cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell 1993; 73:1091–9.

    PubMed  CAS  Google Scholar 

  43. Alexandrov K, Horiuchi H, Steele-Mortimer O et al. Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated Rab proteins to their target membranes. EMBO J 1994; 13:5262–73.

    PubMed  CAS  Google Scholar 

  44. Chen WJ, Andres DA, Goldstein JL et al. cDNA cloning and expression of the peptide-binding β-subunit of rat p21ras farnesyltransferase, the counterpart of yeast DPR1/RAM1. Cell 1991; 66:327–34.

    PubMed  CAS  Google Scholar 

  45. Kohl NE, Diehl RE, Schaber MD et al. Structural homology among mammalian and Saccharomyces cerevisiae isoprenyl-protein transferases. J Biol Chem 1991; 266:18884–8.

    PubMed  CAS  Google Scholar 

  46. Zhang FL, Diehl RE, Kohl NE et al. cDNA cloning and expression of rat and human protein geranylgeranyltransferase type-I. J Biol Chem 1994; 269:3175–80.

    PubMed  CAS  Google Scholar 

  47. Armstrong SA, Seabra MC, Sudhof TC et al. cDNA cloning and expression of the α and β subunits of rat Rab geranylgeranyl transferase. J Biol Chem 1993; 268:12221–9.

    PubMed  CAS  Google Scholar 

  48. Seabra MC, Brown MS, Slaughter CA et al. Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. Cell 1992; 70:1049–57.

    PubMed  CAS  Google Scholar 

  49. Cremers FP, Armstrong SA, Seabra MC et al. REP-2, a Rab escort protein encoded by the choroideremia-like gene. J Biol Chem 1994; 269:2111–7.

    PubMed  CAS  Google Scholar 

  50. Seabra MC, Ho YK, Anant JS. Deficient geranylgeranylation of Ram/Rab27 in choroideremia. J Biol Chem 1995; 270:24420–7.

    PubMed  CAS  Google Scholar 

  51. Goodman LE, Perou CM, Fujiyama A et al. Structure and expression of yeast DPR1, a gene essential for the processing and intracellular localization of RAS proteins. Yeast 1988; 4:271–81.

    PubMed  CAS  Google Scholar 

  52. He B, Chen P, Chen SY et al. RAM2, an essential gene of yeast, and RAM1 encode the two polypeptide components of the farnesyltransferase that prenylates a-factor and RAS proteins. Proc Natl Acad Sci USA 1991; 88:11373–7.

    PubMed  CAS  Google Scholar 

  53. Finegold AA, Schäfer WR, Rine J et al. Common modifications of trimeric G proteins and RAS protein: involvement of polyisoprenylation. Science 1990; 249:165–9.

    PubMed  CAS  Google Scholar 

  54. Nakayama N, Kaziro Y, Arai K et al. Role of STE genes in the mating factor signaling pathway mediated by GPA1 in Saccharomyces cerevisiae. Mol Cell Biol 1988; 8:3777–83.

    PubMed  CAS  Google Scholar 

  55. Hara M, Akasaka K, Akinaga S et al. Identification of RAS farnesyltransferase inhibitors by microbial screening. Proc Natl Acad Sci USA 1993; 90:2281–5.

    PubMed  CAS  Google Scholar 

  56. Mitsuzawa H, Tamanoi F. In vivo assays for farnesyltransferase inhibitors with Saccharomyces cerevisiae. Methods Enzymol 1995; 250:43–51.

    PubMed  CAS  Google Scholar 

  57. Ohya Y, Goebl M, Goodman LE et al. Yeast CAL1 is a structural and functional homologue to the DPR1 (RAM) gene involved in RAS processing. J Biol Chem 1991; 266:12356–60.

    PubMed  CAS  Google Scholar 

  58. Adams AE, Johnson DI, Longnecker RM et al. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J Cell Biol 1990; 111:131–42.

    PubMed  CAS  Google Scholar 

  59. Li R, Havel C, Watson JA et al. The mitotic feedback control gene MAD2 encodes the α-subunit of a prenyltransferase. Nature 1994; 371:438.

    CAS  Google Scholar 

  60. Fujimura K, Tanaka K, Nakano A et al. The Saccharomyces cerevisiae MSI4 gene encodes the yeast counterpart of component A of Rab geranylgeranyl-transferase. J Biol Chem 1994; 269:9205–12.

    PubMed  CAS  Google Scholar 

  61. Waldherr M, Ragnini A, Schweyer RJ et al. MRS6-yeast homologue of the choroideremia gene. Nature Genet 1993; 3:193–4.

    PubMed  CAS  Google Scholar 

  62. Diaz M, Sanchez Y, Bennett T et al. The Schizosaccharomyces pombe cwg2+ gene codes for the β-subunit of a geranylgeranyltransferase type I required for β-glucan synthesis. EMBO J 1993; 12:5245–54.

    PubMed  CAS  Google Scholar 

  63. Godfrey R, Davey J. Sequence of ptb1, a gene for the β-subunit of the type-II geranylgeranyltransferase from the fission yeast Schizosaccharomyces pombe. Yeast, In press.

    Google Scholar 

  64. Therrien M, Chang HC, Solomon NM et al. KSR, a novel protein kinase required for RAS signal transduction. Cell 1995; 83:879–88.

    PubMed  CAS  Google Scholar 

  65. Yang Z, Cramer CL, Watson JC. Protein farnesyltransferase in plants. Molecular cloning and expression of a homolog of the β-subunit from the garden pea. Plant Physiol 1993; 101 667–74.

    PubMed  CAS  Google Scholar 

  66. Morris GN, Pullarkat RK. Bovine brain gray and white matter exhibit differential protein prenyl transferase activity. Neurochem Res 1995; 20:457–60.

    PubMed  CAS  Google Scholar 

  67. Kauffmann RC, Qian Y, Vogt A et al. Activated Drosophila RAS1 is selectively suppressed by isoprenyl transferase inhibitors. Proc Natl Acad Sci USA 1995; 92:10919–23.

    PubMed  CAS  Google Scholar 

  68. Trueblood CE, Ohya Y, Rine J. Genetic evidence for in vivo cross-specificity of the CaaX-box protein prenyl transferases farnesyltransferase and geranylgeranyltransferase-I in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:4260–75.

    PubMed  CAS  Google Scholar 

  69. Ohya, Y, Qadota H, Anraku Y et al. Suppression of yeast geranylgeranyl transferase I defect by alternative prenylation of two target GTPases, Rholp and Cdc42p. Mol Biol Cell 1993; 4:1017–25.

    PubMed  CAS  Google Scholar 

  70. Mitsuzawa H, Esson K, Tamanoi F. Mutant farnesyltransferase β-subunit of Saccharomyces cerevisiae that can substitute for geranylgeranyltransferase type I β-subunit. Proc Natl Acad Sci USA 1995; 92:1704–8.

    PubMed  CAS  Google Scholar 

  71. Yokoyama K, Goodwin GW, Ghomashchi F et al. A protein geranylgeranyltransferase from bovine brain: implications for protein prenylation specificity. Proc Natl Acad Sci USA 1991; 88:5302–6.

    PubMed  CAS  Google Scholar 

  72. Armstrong SA, Hannah VC, Goldstein JL et al. CAAX geranylgeranyl transferase transfers farnesyl as efficiently as geranylgeranyl to RhoB. J Biol Chem 1995; 270:7864–8

    PubMed  CAS  Google Scholar 

  73. Adamson P, Marshall CJ, Hall A et al. Post-translational modifications of p21rho proteins. J Biol Chem 1992; 267:20033–8.

    PubMed  CAS  Google Scholar 

  74. Goldstein JL, Brown MS, Stradley SJ et al. Nonfarnesylated tetrapeptide inhibitors of protein farnesyltransferase. J Biol Chem 1991; 266:15575–8.

    PubMed  CAS  Google Scholar 

  75. Reiss Y, Seabra MC, Armstrong SA et al. Nonidentical subunits of p21H-RAS farnesyltransferase. Peptide binding and farnesyl pyrophosphate carrier functions. J Biol Chem 1991; 266:10672–7.

    PubMed  CAS  Google Scholar 

  76. Omer CA, Kral AM, Diehl RE et al. Characterization of recombinant human farnesyl-protein transferase: Cloning, expression, farnesyl diphosphate binding, and functional homology with yeast prenyl-protein transferases. Biochemistry 1993; 32:5167–76.

    PubMed  CAS  Google Scholar 

  77. Bukhtiyarov YE, Omer CA, Allen CM. Photoreactive analogs of prenyl diphosphates as inhibitors and probes of human protein farnesyltransferase and geranylgeranyltransferase type I. J Biol Chem 1995; 270:19035–40.

    PubMed  CAS  Google Scholar 

  78. Ying W, Sepp-Lorenzino L, Cai K et al. Photoaffinity-labeling peptide substrates for farnesyl-protein transferase and the intersubunit location of the active site. J Biol Chem 1994; 269:470–7.

    PubMed  CAS  Google Scholar 

  79. Stradley SJ, Rizo J, Gierasch LM. Conformation of a heptapeptide substrate bound to protein farnesyltransferase. Biochemistry 1993; 32: 12586–90.

    PubMed  CAS  Google Scholar 

  80. Koblan KS, Culberson JC, Desolms SJ et al. NMR studies of novel inhibitors bound to farnesyl-protein transferase. Protein Sci 1995; 4:681–8.

    PubMed  CAS  Google Scholar 

  81. Reiss Y, Brown MS, Goldstein JL. Divalent cation and prenyl pyrophosphate specificities of the protein farnesyltransferase from rat brain, a zinc metalloenzyme. J Biol Chem 1992; 267:6403–8.

    PubMed  CAS  Google Scholar 

  82. Chen WJ, Moomaw JF, Overton L et al. High level expression of mammalian protein farnesyltransferase in a baculovirus system. The purified protein contains zinc. J Biol Chem 1993; 268:9675–80.

    PubMed  CAS  Google Scholar 

  83. Vogt A, Sun J, Qian Y et al. Burkitt lymphoma daudi cells contain two distinct farnesyltransferases with different divalent cation requirements. Biochemistry 1995; 34:12398–403.

    PubMed  CAS  Google Scholar 

  84. Zhang FL, Moomaw JF, Casey PJ. Properties and kinetic mechanism of recombinant mammalian geranylgeranyltransferase type I. J Biol Chem 1994; 269:23465–70.

    PubMed  CAS  Google Scholar 

  85. Yokoyama K, McGeady P, Gelb MH. Mammalian protein geranylgeranyltransferase-I: substrate specificity, kinetic mechanism, metal requirements, and affinity labeling. Biochemistry 1995; 34:1344–54.

    PubMed  CAS  Google Scholar 

  86. Pompliano DL, Rands E, Schaber MD et al. Steady-state kinetic mechanism of RAS farnesyhprotein transferase. Biochemistry 1992; 31:3800–7.

    PubMed  CAS  Google Scholar 

  87. Pompliano DL, Schaber MD, Mosser SD et al. Isoprenoid diphosphate utilization by recombinant human farnesyhprotein transferase: Interactive binding between substrates and a preferred kinetic pathway. Biochemistry 1993; 32:8341–7.

    PubMed  CAS  Google Scholar 

  88. Furfine ES, Leban JJ, Landavazo A et al. Protein farnesyltransferase: kinetics of farnesyl pyrophosphate binding and product release. Biochemistry 1995; 34:6857–62.

    PubMed  CAS  Google Scholar 

  89. Dolence JM, Poulter CD. A mechanism for posttranslational modifications of proteins by yeast protein farnesyltransferase. Proc Natl Acad Sci USA 1995; 92:5008–11.

    PubMed  CAS  Google Scholar 

  90. Mitsuzawa H, Del Villar K, Tamanoi F. unpublished results, manuscript in preparation.

    Google Scholar 

  91. Andres DA, Goldstein JL, Ho YK et al. Mutational analysis of α-subunit of protein farnesyltransferase. Evidence for a catalytic role. J Biol Chem 1993; 268:1383–90.

    PubMed  CAS  Google Scholar 

  92. Bolton GL, Sebolt-Leopold JS, Hodges JC. RAS oncogene directed approaches in cancer chemotherapy. Ann Rep Med Chem 1994; 29:165–74.

    CAS  Google Scholar 

  93. Manne V, Ricca CS, Brown JG et al. RAS farnesylation as a target for novel antitumor agents: potent and selective farnesyl diphosphate analog inhibitors of farnesyltransferase. Drug Dev Res 1995; 34:121–37.

    CAS  Google Scholar 

  94. Roskoski R Jr, Ritchie P, Gahn LG. Farnesyl-protein transferase and geranylgeranyl-protein transferase assays using phosphocellulose paper absorption. Anal Biochem 1994; 222:275–80.

    PubMed  Google Scholar 

  95. Harwood HJ Jr. Protein farnesyltransferase: measurement of enzymatic activity in 96-well format using TopCount microplate scintillation counting technology. Anal Biochem 1995; 226:268–78.

    PubMed  CAS  Google Scholar 

  96. Khan SG, Mukhtar H, Agarwal R. A rapid and convenient filter-binding assay for RAS p21 processing enzyme farnesyltransferase. J Biochem Biophys Methods 1995; 30:133–44.

    PubMed  CAS  Google Scholar 

  97. Pompliano DL, Gomez RP, Anthony NJ. Intramolecular fluorescence enhancement: a continuous assay of RAS farnesyl:protein transferase. J Am Chem Soc 1992; 114:7945–6.

    CAS  Google Scholar 

  98. Cassidy PB, Dolence JM, Poulter CD. Continuous fluorescence assay for protein prenyltransferases. Methods Enzymol 1995; 250:30–43.

    PubMed  CAS  Google Scholar 

  99. Omura S, Van Der Pyl D, Inokoshi J et al. Pepticinnamins, new farnesyl-protein transferase inhibitors produced by an actinomycete. I. Producing strain, fermentation, isolation, and biological activity. J Antibiot 1993; 46:222–8.

    PubMed  CAS  Google Scholar 

  100. Lingham RB, Silverman KC, Bills GF et al. Chaetomella acutiseta produces chaetomellic acids A and B which are reversible inhibitors of farnesyl-protein transferase. Appl Microbiol Biotechnol 1993; 40:370–4.

    PubMed  CAS  Google Scholar 

  101. Gibbs JB, Pompliano DL, Mosser SD et al. Selective inhibition of farnesyl-protein transferase blocks RAS processing in vivo. J Biol Chem 1993; 268:7617–20.

    PubMed  CAS  Google Scholar 

  102. Singh SB, Zink DL, Lisch JM et al. Isolation and structure of chaetomellic acids A and B from Chaetomella acutiseta: farnesyl pyrophosphate mimic inhibitors of RAS farnesyl-protein transferase. Tetrahedron 1993; 49:5917–26.

    CAS  Google Scholar 

  103. Dufresne C, Wilson KE, Singh SB et al. Zaragozic acids D and D2: potent inhibitors of squalene synthase and of RAS farnesyl-protein transferase. J Nat Prod 1993; 56:1923–9.

    PubMed  CAS  Google Scholar 

  104. Liu WC, Barbacid M, Bulgar M et al. l0′-Desmethoxystreptonigrin, a novel analog of streptonigrin. J Antibiot 1992; 45:454–7.

    PubMed  CAS  Google Scholar 

  105. Hara M, Han M. RAS farnesyltransferase inhibitors suppress the phenotype resulting from an activated RAS mutation in Caenorhabditis elegans. Proc Natl Acad Sci USA 1993; 92:3333–7.

    Google Scholar 

  106. Van der Pyl D, Inokoshi J, Shiomi K et al. Inhibition of farnesyl-protein transferase by gliotoxin and acetylgliotoxin. J Antibiot 1992; 45:1802–5.

    PubMed  Google Scholar 

  107. Nagase T, Kawata S, Tamura S et al. Inhibition of Cell Growth of Human Hepatoma Cell Line (Hep G2) By a Farnesyl Protein Transferase Inhibitor: A Preferential Suppression of fas Farnesylation J Cancer 1996; 65:620–626.

    CAS  Google Scholar 

  108. Sattler I, Gröne C, Zeeck A. New compounds of the manumycin group of antibiotics and a facilitated route for their structure elucidation. J Org Chem 1993; 58:6583–7.

    CAS  Google Scholar 

  109. Zeeck A, Schröder K, Frobel K et al. The structure of manumycin. J Antibiot 1987; 40:1530–40.

    PubMed  CAS  Google Scholar 

  110. Singh SB, Liesch JM, Lingham RB et al. Actinoplanic Acid A: A macrocyclic polycarboxylic acid which is a potent inhibitor of RAS farnesyl-protein transferase. J Am Chem Soc 1994; 116:11606–7.

    CAS  Google Scholar 

  111. Jayasuriya H, Ball RG, Zink DL et al. Barceloneic acid A, a new farnesyl-protein transferase inhibitor from a Phoma species. J Nat Prod 1995; 58:986–91.

    PubMed  CAS  Google Scholar 

  112. Kaneko T, Dabrah T, Harwood H et al. Novel inhibitors of squalene synthase and protein farnesyltransferase. posterpresentation: “Conference on biotechnology of microbial products”. Oiso, Japan, April 1995.

    Google Scholar 

  113. Singh SB, Zink DL, Bills GF et al. Cylindrol A: a novel inhibitor of RAS farnesyl-protein transferase from Cylindrocarpon lucidum. Tetrahedron Lett 1995; 36:4935–8.

    CAS  Google Scholar 

  114. Singh SB, Jones ET, Goetz MA et al. Fusidienol: a novel inhibitor of RAS farnesyl-protein transferase from Fusidium griseum. Tetrahedron Lett 1994; 35:4693–6.

    CAS  Google Scholar 

  115. Singh SB, Zink DL, Liesch JM et al. Preussomerins and deoxypreus-somerins: novel inhibitors of RAS farnesyl-protein transferase. J Org Chem 1994; 59:6296–302.

    CAS  Google Scholar 

  116. Van der Pyl D, Cans P, Debernard JJ et al. RPR113228, a novel farnesyl-protein transferase inhibitor produced by Chrysosporium lobatum. J Antibiot 1995; 48:736–7.

    PubMed  Google Scholar 

  117. Schulz S, Nyce JW. Inhibition of protein farnesyltransferase: a possible mechanism of tumor prevention by dehydroepiandrosterone sulfate. Carcinogenesis 1994; 15:2649–52.

    PubMed  CAS  Google Scholar 

  118. Phife DW, Patton RW, Berrie R et al. SCH 58450, a novel farnesyl protein transferase inhibitor possessing a 6a, 12a:7,12-diepoxybenz[a] anthracene ring system. Tetrahedron Lett 1995; 36:6995–8.

    CAS  Google Scholar 

  119. Bishop WR, Bond R, Petrin J et al. Novel tricyclic Inhibitors of farnesyl protein transferase. J Biol Chem 1995; 270:30611–8.

    PubMed  CAS  Google Scholar 

  120. Crowell PL, Lin S, Vedejs E et al. Identification of metabolites of the antitumor agent d-limonene capable of inhibiting protein isoprenylation and cell growth. Cane Chemother Pharmacol 2992; 31:205–12.

    Google Scholar 

  121. Gelb MH, Tamanoi F, Yokoyama K et al. The inhibition of protein prenyltransferases by oxygenated metabolites of limonene and perillyl alcohol. Cancer Lett 1995; 91:169–75.

    PubMed  CAS  Google Scholar 

  122. Patel DV, Schmidt RJ, Biller SA et al. Farnesyl diphosphate-based inhibitors of RAS farnesyl protein transferase. J Med Chem 1995; 38:2906–21.

    PubMed  CAS  Google Scholar 

  123. Kothapalli R, Guthrie N, Chambers AF et al. Farnesylamine: an inhibitor of farnesylation and growth of RAS-transformed cells. Lipids 1993; 28:469–73.

    CAS  Google Scholar 

  124. Cohen LH, Valentijn ARPM, Roodenburg L et al. Different analogs of farnesyl pyrophosphate inhibit squalene synthase and protein:farnesyltransferase to different extents. Biochem Pharmacol 1995; 49:839–45.

    PubMed  CAS  Google Scholar 

  125. Valentijn ARPM, van den Berg O, van der Marel GA et al. Synthesis of pyrophosphonic acid analogs of farnesyl pyrophosphate. Tetrahedron 1995; 51:2099–108.

    CAS  Google Scholar 

  126. Brown MS, Goldstein JL, Paris KJ et al. Tetrapeptide inhibitors of protein farnesyltransferase: Amino-terminal substitution in phenylalanine-containing tetrapeptides restores farnesylation. Proc Natl Acad Sci USA 1992; 89:8313–6.

    PubMed  CAS  Google Scholar 

  127. Leftheris K, Kline T, Natarajan S et al. Peptide based p21ras farnesyl transferase inhibitors: systematic modification of the tetrapeptide CA1A2X motif. Bioorg Med Chem Lett 1994; 4:887–92.

    CAS  Google Scholar 

  128. Graham SL, deSolms SJ, Giuliani EA et al. Pseudopeptide inhibitors of RAS farnesyl-protein transferase. J Med Chem 1994; 37:725–32.

    PubMed  CAS  Google Scholar 

  129. Kohl NE, Mosser SD, deSolms SJ et al. Selective inhibition of RAS-dependent transformation by a farnesyltransferase inhibitor. Science 1993; 260:1934–7.

    PubMed  CAS  Google Scholar 

  130. Garcia AM, Rowell C, Ackermann K et al. Peptidomimetic inhibitors of RAS farnesylation and function in whole cells. J Biol Chem 1993; 268:18415–8.

    PubMed  CAS  Google Scholar 

  131. Kohl NE, Conner MW, Gibbs JB et al. Development of inhibitors of protein farnesylation as potential chemotherapeutic agents. J Cell Biochem 1995; Suppl 22:145–50.

    Google Scholar 

  132. Wai JS, Bamberger DL, Fisher TE et al. Synthesis and biological activity of RAS farnesyl protein transferase inhibitors tetrapeptide analogs with amino methyl and carbon linkages. Bioorg Med Chem 1994; 2:939–47.

    PubMed  CAS  Google Scholar 

  133. Nagasu T, Yoshimatsu K, Rowell C et al. Inhibition of human tumor xenograft growth by treatment with the farnesyl transferase inhibitor B956. Cancer Res 1995; 55:5310–4.

    PubMed  CAS  Google Scholar 

  134. Patel DV, Patel MM, Robinson SS et al. Phenol based tripeptide inhibitors of RAS farnesyl protein transferase. Bioorg Med Chem Lett 1994; 4:1883–8.

    CAS  Google Scholar 

  135. Harrington EM, Kowalczyk JJ, Pinnow SL et al. Cysteine and methionine linked by carbon pseudopeptides inhibit farnesyl transferase. Bioorg Med Chem Lett 1994; 4:2775–80.

    CAS  Google Scholar 

  136. Nigam M, Seong CM, Qian Y et al. Potent inhibition of human tumor p21ras farnesyltransferase by AlA2-lacking p21ras CA1A2X peptidomimetics. J Biol Chem 1993; 268:20695–8.

    PubMed  CAS  Google Scholar 

  137. Qian Y, Blaskovich MA, Saleem M et al. Design and structural requirements of potent peptidomimetic inhibitors of p21ras farnesyltransferase. J Biol Chem 1994; 269:12410–3.

    PubMed  CAS  Google Scholar 

  138. Vogt A, Qian Y, Blaskovich MA et al. A non-peptide mimetic of RAS-CAAX: selective inhibition of farnesyltransferase and RAS processing. J Biol Chem 1995; 270:660–4.

    PubMed  CAS  Google Scholar 

  139. Lerner EC, Qian Y, Hamilton AD et al. Disruption of oncogenic K-RAS4B processing and signaling by a potent geranylgeranyltransferase I inhibitor. J Biol Chem 1995; 270:26770–3.

    PubMed  CAS  Google Scholar 

  140. James GL, Goldstein JL, Brown MS et al. Benzodiazepine peptidomimetics: potent inhibitors of RAS farnesylation in animal cells. Science 1993; 60:1937–42.

    Google Scholar 

  141. Bhide, RS, Patel DV, Patel MM et al. Rational design of potent carboxylic acid based bisubstrate inhibitors of RAS farnesyl protein transferase. Bioorg Med Chem Lett 1994; 4:2107–12.

    CAS  Google Scholar 

  142. Patel DV, Gordon EM, Schmidt RJ et al. Phosphinyl acid-based bisubstrate analog inhibitors of farnesyl protein transferase. J Med Chem 1995; 38:435–42.

    PubMed  CAS  Google Scholar 

  143. Manne V, Yan N, Carboni JM et al. Bisubstrate inhibitors of farnesyltransferase: a novel class of specific inhibitors of RAS transformed cells. Oncogene 1995; 10:1763–79.

    PubMed  CAS  Google Scholar 

  144. Prendergast GC, Davide JP, deSolms SJ et al. Farnesyltransferase inhibition causes morphological reversion of RAS-transformed cells by a complex mechanism that involves regulation of the actin cytoskeleton. Mol Cell Biol 1994; 14:4193–202.

    PubMed  CAS  Google Scholar 

  145. Cox AD, Garcia AM, Westwick JK et al. The CAAX peptidomimetic compound B581 specifically blocks farnesylated, but not geranylgeranylated or myristylated, oncogenic RAS signaling and transformation. J Biol Chem 1994; 269:19203–6.

    PubMed  CAS  Google Scholar 

  146. Kohl NE, Wilson FR, Mosser SD et al. Protein farnesyltransferase inhibitors block the growth of RAS-dependent tumors in nude mice. Proc Natl Acad Sci USA 1994; 91:9141–5.

    PubMed  CAS  Google Scholar 

  147. James GL, Brown MS, Cobb MH et al. Benzodiazepine peptidomimetic BZA-5B interrupts the MAP kinase activation pathway in H-RAS-transformed rat-1 cells, but not in untransformed cells. J Biol Chem 1994; 269:27705–14.

    PubMed  CAS  Google Scholar 

  148. McGuire TF, Qian Y, Blaskovich MA et al. CAAX peptidomimetic FTI-244 decreases platelet-derived growth factor receptor tyrosin phosphorylation levels and inhibits stimulation of phosphatidylinositol 3-kinase but not mitogen-activated protein kinase. Biochem Biophys Res Comm 1995; 214:295–303.

    PubMed  CAS  Google Scholar 

  149. Lerner EC, Qian Y, Blaskovich MA et al. RAS CAAX peptidomimetic FTI-277 selectively blocks oncogenic RAS signaling by inducing cytoplasmic accumulation of inactive RAS-Raf complexes. J Biol Chem 1995; 45:26802–6.

    Google Scholar 

  150. Zhao J, Kung HF, Manne V. Farnesylation of p21 RAS proteins in Xenopus oocytes. Cell Mol Biol Res 1994; 40:313–21.

    PubMed  CAS  Google Scholar 

  151. Sun J, Qian Y, Hamilton AD et al. RAS CAAX peptidomimetic FTI 276 selectively blocks tumor growth in nude mice of a human lung carcinoma with K-RAS mutation and p53 deletion. Cane Res 1995; 55:4243–7.

    CAS  Google Scholar 

  152. Kohl NE, Omer CA, Conner MW et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in RAS transgenic mice. Nature Med 1995; 1:792–7.

    PubMed  CAS  Google Scholar 

  153. Yan N, Ricca C, Fletcher J et al. Farnesyltransferase inhibitors block the neurofibromatosis type I (NF1, malignant phenotype). Cancer Res 1995; 55:3569–75.

    PubMed  CAS  Google Scholar 

  154. McCormick F. Activators and effectors of RAS p21 proteins. Curr Opin Genet Dev 1994; 4:71–6.

    PubMed  CAS  Google Scholar 

  155. Lebowitz PF, Davide JP, Prendergast GC. Evidence that farnesyltransferase inhibitors suppress RAS transformation by interfering with Rho activity. Mol Cell Biol 1995; 15:6613–21.

    PubMed  CAS  Google Scholar 

  156. Cox AD, Brtva TR, Lowe DG et al. R-RAS induces malignant, but not morphologic, transformation of NIH3T3 cells. Oncogene 1994; 9:3281–8.

    PubMed  CAS  Google Scholar 

  157. Carboni JM, Yan N, Cox AD et al. Farnesyltransferase inhibitors are inhibitors of RAS but not R-RAS2/TC21 transformation. Oncogene 1995; 10:1905–13.

    PubMed  CAS  Google Scholar 

  158. Dalton MB, Fantle KS, Bechtold HA et al. The farnesyl protein transferase inhibitor BZA-5B blocks farnesylation of nuclear lamins and p21ras but does not affect their function or localization. Cancer Res 1995; 55:3295–304.

    PubMed  CAS  Google Scholar 

  159. Kawabata M, Imamura T, Miazono K et al. Interaction of the transforming growth factor-β type I receptor with franesyl-protein-transferase-α. J Biol Chem 1995; 270:29628–31.

    PubMed  CAS  Google Scholar 

  160. Wang T, Danielson PD, Li B et al. The p21RAS farnesyltransferase α subunit in TGF-β and activin signaling. Science 1996; 271: 1120–2.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 R.G. Landes Company

About this chapter

Cite this chapter

Sattler, I., Tamanoi, F. (1996). Prenylation of RAS and Inhibitors of Prenyltransferases. In: Regulation of the RAS Signaling Network. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1183-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1183-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8502-1

  • Online ISBN: 978-1-4613-1183-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics