Skip to main content

Mammals I: Regulation of RAS Activation

  • Chapter
Regulation of the RAS Signaling Network

Abstract

The discovery of the RAS oncogene was one of the pivotal events in modern cancer research.1–3 However, the importance of the discovery was in many ways due to our knowledge of hormone action and the role of G-proteins in signaling.4 v-Ha-RAS was known to bind GTP and become phosphorylated when the GTP was hydrolyzed to GDP.5 The similarity between the possible actions of RAS-GTP and other members of the G-protein system was noticed soon after the identification of c-Ha-RAS and its ability to hydrolyze GTP.4–6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harvey JJ. An unidentified virus which causes the rapid production of tumours in mice. Nature 1964; 204:1104–1105.

    PubMed  CAS  Google Scholar 

  2. Shih C, Padhy LC, Murray M et al. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 1981; 290:261–264.

    PubMed  CAS  Google Scholar 

  3. Krontiris TG, Cooper GM. Transforming activity of human tumor DNAs. Proc Natl Acad Sci USA 1981; 78:1181–1184.

    PubMed  CAS  Google Scholar 

  4. McGrath JP, Capon DJ, Goeddel DV et al. Comparative biochemical properties of normal and activated human RAS p21 protein. Nature 1984;310:644–649.

    PubMed  CAS  Google Scholar 

  5. Shih TY, Weeks MO, Young HA et al. Identification of a sarcoma virus coded phosphoprotein in nonproducer cells transformed by Kirsten or Harvey murine sarcoma virus. Virology 1979; 96:64–69

    PubMed  CAS  Google Scholar 

  6. Shih TY, Papageorge AG, Stokes PE et al. Guanine nucleotide-binding and autophosphorylating activities associated with the p21src protein of Harvey murine sarcoma virus. Nature 1980; 287:686–691.

    PubMed  CAS  Google Scholar 

  7. Gilman AG. G proteins and dual control of adenylate cyclase. Cell 1984; 36:577–579.

    PubMed  CAS  Google Scholar 

  8. Fortini ME, Simon MA, Rubin GM. Signaling by the sevenless protein tyrosine kinase is mimicked by RAS-1 activation. Nature 1992; 355:559–561.

    PubMed  CAS  Google Scholar 

  9. Aroian RV, Koga M, Mendel JA et al. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature 1990; 340:693–699.

    Google Scholar 

  10. Rogge RD, Karlovich CA, Banerjee U. Genetic dissection of a neuro-developmental pathway: Son of sevenless functions downstream of sevenless and EGF receptor tyrosine kinases. Cell 1991; 64:39–48.

    PubMed  CAS  Google Scholar 

  11. Chen J, Iyengar R. Suppression of RAS-induced transformation of NIH 3T3 cells by activated G alpha S. Science 1994; 263:1278–1281.

    PubMed  CAS  Google Scholar 

  12. Ridley AJ, Paterson HF, Johnston CL et al. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992; 70:401–410.

    PubMed  CAS  Google Scholar 

  13. De Larco JE, Todaro GJ. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA 1978; 75:4001–4005.

    PubMed  Google Scholar 

  14. Burgering MT, Bos JL. Regulation of RAS-mediated signaling: more than one way to skin a cat. TIBS 1995; 20:18–22.

    PubMed  CAS  Google Scholar 

  15. Maruta H, Burgess AW. Regulation of the RAS signaling network. BioEssays 1994; 16:489–495.

    PubMed  CAS  Google Scholar 

  16. Sefton BM, Hunter T, Beemon K et al. Evidence that the phosphorylation of tyrosine is essential for cellular transformation by rous sarcoma virus. Cell 1980; 20:807–816.

    PubMed  CAS  Google Scholar 

  17. Downward J, Parker P, Waterfield MD. Autophosphorylation sites on the epidermal growth factor receptor. Nature (London) 1984; 311:483–485.

    CAS  Google Scholar 

  18. Hu P, Margolis EY, Scolnik Y et al. Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol Cell Biol 1992; 12:981–990.

    PubMed  CAS  Google Scholar 

  19. Pelicci G, Lanfrancone L, Grignani F et al. A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 1992; 70:93–104.

    PubMed  CAS  Google Scholar 

  20. Pawson T, Schlessinger J. SH2 and SH3 domains. Curr Biol 1993; 13:3567–3576.

    Google Scholar 

  21. Lowenstein EJ, Daly RJ, Batzer AG et al. The SH2 and SH3 domain-containing protein Grb2 links receptor tyrosine kinases to RAS signaling. Cell 1992; 70:431–442.

    PubMed  CAS  Google Scholar 

  22. Feig LA. Guanine-nucleotide exchange factors: a family of positive regulators of RAS and related GTPases. Curr Biol 1994; 6:204–211

    CAS  Google Scholar 

  23. Shou C, Farnsworth CL, Neel BG et al. Molecular cloning of cDNAs encoding a guanine-nucleotide releasing factor for RAS p21. Nature 1992; 358:351–354.

    PubMed  CAS  Google Scholar 

  24. Martegani E, Vanoni M, Zippel R et al. Cloning by functional complementationn of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J 1992; 11:2151–2157.

    PubMed  CAS  Google Scholar 

  25. Feramisco JR, Clark R, Wong G et al. Transient reversion of RAS oncogene-induced cell transformation by antibodies specific for amino acid 12 of RAS protein. Nature (London) 1985; 314:639–641.

    CAS  Google Scholar 

  26. Feig LA, Cooper GM. Inhibition of NIH 3T3 cell proliferation by a mutant RAS protein with preferential affinity for GDP. Mol Cell Biol 1988 8:3235–3243.

    PubMed  CAS  Google Scholar 

  27. Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264:1415–1421.

    PubMed  CAS  Google Scholar 

  28. Wilks AF, Harpur AG. Cytokine signal transduction and the JAK family of protein tyrosine kinases. BioEssays 1994; 16:313–320.

    PubMed  CAS  Google Scholar 

  29. Ihle J. Cytokine receptor signaling. Nature 1995; 377:591–594.

    PubMed  CAS  Google Scholar 

  30. Kazlauskas A, Cooper JA. Phosphorylation of the PDGF receptor ß sub-unit creates a tight binding site for phosphatidyl 3-kinase. EMBO J 1990; 9:3279–3286.

    PubMed  CAS  Google Scholar 

  31. Itoh T, Kaibuchi K, Matsuda T et al. A protein factor for RAS-dependent activation of MAP kinase through MAP kinase kinase. Proc Natl Acad Sci USA 1993; 90:975–979.

    PubMed  CAS  Google Scholar 

  32. Trahey M, McCormick F. A cytoplasmic protein stimulates normal N-RAS GTPase, but does not affect oncogenic mutants. Science 1987; 238:542–545.

    PubMed  CAS  Google Scholar 

  33. Manser E, Leung T, Salihuddin H et al. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature 1993; 363:364–367.

    PubMed  CAS  Google Scholar 

  34. DiBattiste D, Golubic M, Stacey D et al. Differences in the interaction of c-HaRAS-GMP-PNP with full-length neurofibromin (NF1) and GAP. Oncogene (1993); 8:637–643.

    PubMed  CAS  Google Scholar 

  35. Roberts AB, Lamb LC, Newton DL et al. Transforming growth factors: Isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction. Proc Natl Acad Sci USA 1980; 77:3494–3498.

    PubMed  CAS  Google Scholar 

  36. Rayter SI, Woodrow M, Lucas SC et al. p21RAS mediates control of IL-2 gene promoter function in T cell activation. EMBO J 1992; 11:4549–4956.

    PubMed  CAS  Google Scholar 

  37. Castelli C, Sensi M, Lupetti R et al. Expression of interleukin 1 alpha, interleukin-6, and tumor necrosis factor alpha genes in human melanoma clones is associated with that of mutated N-RAS oncogene. Cancer Res 1994; 54:4785–4790.

    PubMed  CAS  Google Scholar 

  38. Kojima H, Hara K, Mineta-Kitajima R et al. Isolation of a subclonal cell line of PC12 transfected with dexamethasome-regulated RAS oncogene: morphological differentiation, biochemical properties, and tumorigenicity. J Biochem Tokyo 1993; 114:194–202.

    PubMed  CAS  Google Scholar 

  39. Mayer BJ, Hamaguchi M, Hanafusa H. A novel viral oncogene with structural similarity to phospholipase C. Nature 1988; 332:272–275.

    PubMed  CAS  Google Scholar 

  40. Tanaka S, Morishita T, Hashimoto Y et al. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc Natl Acad Sci USA 1994; 91:3443–3447.

    PubMed  CAS  Google Scholar 

  41. Hernandez-Sotomayor SM, Carpenter G. Non-catalytic activation of phospholipase C-gamma 1 in vitro by epidermal growth factor receptor. Biochem J 1993; 293:507–511.

    PubMed  CAS  Google Scholar 

  42. Posner I, Levitzki A. Kinetics of phosphorylation of the SH2-containing domain of phospholipase C gamma 1 by the epidermal growth factor receptor. FEBS Lett 1994; 107:109–116.

    Google Scholar 

  43. Gergel JR, McNamara DJ, Dobrusin EM et al. Identification of amino acids in the N-terminal SH2 domain of phospholipase Cγ1 important in the interaction with epidermal growth factor receptor. Biochem 1994; 33:14671–14678.

    CAS  Google Scholar 

  44. Kawamoto T, Sato JD, Le A et al. Growth stimulation of A431 cells by epidermal growth factor: Identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. PNAS 1983; 80:1337–1341.

    PubMed  CAS  Google Scholar 

  45. Rees AR, Gregoriou M, Johnson P et al. High affinity epidermal growth factor receptors on the surface of A431 cells have restricted lateral diffusion. EMBO J 1984; 3:1843–1847.

    PubMed  CAS  Google Scholar 

  46. Fowler KJ, Walker F, Alexander W et al. A mutation in the epidermal growth factor receptor in waved-2 mice has a profound effect on receptor biochemistry that results in impaired lactation. Proc Natl Acad Sci USA 1995; 92:1465–1469.

    PubMed  CAS  Google Scholar 

  47. Walker F, Nice E, Fabri L et al. Resistance to receptor-mediated degradation of a murine epidermal growth factor analogue (EGF-Val-47) potentiates its mitogenic activity. Biochem 1990; 29: 10635–10640.

    CAS  Google Scholar 

  48. Yarden Y, Schlessinger J. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochem 1987; 26:1434–1442.

    CAS  Google Scholar 

  49. Yarden Y, Schlessinger J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochem 1987; 26:1443–1451.

    CAS  Google Scholar 

  50. Qian X, Decker SJ, Greene MI. P185c-neu and epidermal growth factor receptor associate into a structure composed of activated kinases. Proc Natl Acad Sci USA 1992; 89:1330–1334.

    CAS  Google Scholar 

  51. Walker F, Burgess AW. Reconstitution of the high affinity epidermal growth factor receptor on cell-free membranes after transmodulation by platelet derived growth factor. Mol Cell Biol 1991; 266:2746–2752.

    CAS  Google Scholar 

  52. Groenen LC, Nice EC, Burgess AW. Structure-function relationships for the EGF/TGFα family of mitogens. Growth Factors 1994; 11:235–257.

    PubMed  CAS  Google Scholar 

  53. Karunagaran D, Tzahar E, Liu N et al. Neu differentiation factor inhibits EGF binding. J Biol Chem 1995; 270:9982–9990.

    PubMed  CAS  Google Scholar 

  54. Savage CR Jr, Inagami T et al. Epidermal growth factor. Location of disulfide bonds. J Biol Chem 1972; 247:7669–7672.

    Google Scholar 

  55. Marquardt H, Hinkapillar MW et al. Transforming growth factors produced by retrovirus-transformed rodent fibroblasts and human melanoma cells:Amino acid sequence homology with epidermal growth factor. Proc Natl Acad Sci USA 1983; 80:4684–4688.

    PubMed  CAS  Google Scholar 

  56. Higashiyama S, Abraham JA et al. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 1991; 251:936–939.

    PubMed  CAS  Google Scholar 

  57. Shoyab M, Plowman GD et al. Structure and function of human amphiregulin: A member of the epidermal growth factor family. Science 1989; 243:1074–1076.

    PubMed  CAS  Google Scholar 

  58. Selva E, Raden DL, Davis RJ. Mitogen-activated protein kinase stimulation by a tyrosine kinase-negative epidermal growth factor receptor. J Biol Chem 1993; 268:2250–2254.

    PubMed  CAS  Google Scholar 

  59. Ruff-Jamison S, McGlade J, Pawson T et al. Epidermal growth factor stimulates the tyrosine phosphorylation of SHC in the mouse. J Biol Chem 1993; 268:7610–7612.

    PubMed  CAS  Google Scholar 

  60. Rozakis-Adcock M, McGlade J, Mbamalu G et al. Association of the She and Grb2/Sem5 SH2-containing proteins is implicated in activation of the RAS pathways by tyrosine kinases. Nature 1992; 360:689–671.

    PubMed  CAS  Google Scholar 

  61. Maignan S, Guilloteau J-P, Fromage N et al. Crystal structure of the mammalian Grb2 adaptor. Science 1995; 268:291–293.

    PubMed  CAS  Google Scholar 

  62. Johnson GL, Vaillancourt RR. Sequential protein kinase reactions controlling cell growth and differentiation. Curr Biol 1994; 6:230–238.

    CAS  Google Scholar 

  63. Koch CA, Anderson D, Moran M et al. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 1991; 252:668–674.

    PubMed  CAS  Google Scholar 

  64. Buday L, Downward J. Epidermal growth factor regulates p21RAS through the formation of a complex of receptor, Grb2 adaptor protein, and SOS nucleotide exchange factor. Cell 1993; 73:611–620.

    PubMed  CAS  Google Scholar 

  65. Moodie SA, Willumsen BM, Weber MJ et al. Complexes of RAS.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 1993; 260:1658–1661.

    PubMed  CAS  Google Scholar 

  66. Buscher D, Hipskind RA, Krautwald S et al. RAS-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages. Mol Cell Biol 1995; 15:466–475.

    PubMed  CAS  Google Scholar 

  67. Wane PH, Viciana PR, Downward J. Direct interaction of RAS and the amino-terminal region of raf-1 in vitro. Nature 1993; 364:352–355.

    Google Scholar 

  68. Cowley S, Paterson H, Kemp P et al. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 1994;77:841–852.

    PubMed  CAS  Google Scholar 

  69. Batzer AG, Rotin D et al. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol Cell Biol 1994; 14: 5192–5201.

    PubMed  CAS  Google Scholar 

  70. Soler C, Alvarez CV, Beguinot L et al. Potent SHC tyrosine phosphorylation by epidermal growth factor at low receptor density or in the absence of receptor autophosphorylation sites. Oncogene 1994; 9:2207–2215.

    PubMed  CAS  Google Scholar 

  71. Gotoh N, Muroya K, Hattori S et al. The SH2 domain of She suppresses EGF-induced mitogenesis in a dominant negative manner. Oncogene 1995; 11:2525–2533.

    PubMed  CAS  Google Scholar 

  72. Waters DB, Holt KH, Ross SE et al. Desensitization of RAS activation by a feedback dissassociation of the SOS-Grb2 complex. J Biol Chem 1995; 270:20883–20886.

    PubMed  CAS  Google Scholar 

  73. Burton J, Roberts D, Montaldi M et al. A mammalian guanine-nucleotide-releasing protein enhances function of yeast secretory protein Sec4. Nature 1993; 361:464–467.

    PubMed  CAS  Google Scholar 

  74. Muthuswamy SK, Siegel PM, Dankort DL et al. Mammary tumors expressing the neu proto-oncogene possess elevated c-Src tyrosine kinase activity. Mol Cell Biol 1994; 14:735–743.

    PubMed  CAS  Google Scholar 

  75. Adachi M, Fischer EH, Ilhe J et al. Mammalian SH2-containing protein tyrosine phosphatases. Letter to Editor. Cell 1996; 85:15.

    PubMed  CAS  Google Scholar 

  76. Feng G-S, Hui C-C, Pawson T. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science 1993; 259: 1607–1611.

    PubMed  CAS  Google Scholar 

  77. Nakafuku M, Satoh T et al. Differentiation factors, including nerve growth factor, fibroblast growth factor, and interleukin-6, induce an accumulation of an active RAS.GTP complex in rat pheochromocytoma PC12 cells. J Biol Chem 1992; 267:19448–19454.

    PubMed  CAS  Google Scholar 

  78. Spivak-Kroizman T, Mohammadi M, Hu P et al. Point mutation in the fibroblast growth factor receptor eliminates phosphatidylinositol hydrolysis without affecting neuronal differentiation of PC12 cells. J Biol Chem 1994; 269:14419–14423.

    PubMed  CAS  Google Scholar 

  79. Heumann R. Neurotrophin signaling. Curr Opin Neurobiol 1994; 4:668–679.

    PubMed  CAS  Google Scholar 

  80. Barbacid M. Neurotrophic factors and their receptors. Curr Biol 1995; 7:148–155.

    CAS  Google Scholar 

  81. Matsuda M, Hashimoto Y et al. CRK protein binds to two guanine nucleotide-releasing proteins for the RAS family and modulates nerve growth factor-induced activation of RAS in PC12 cells. Mol Cell Biol 1994; 14:5495–5500.

    PubMed  CAS  Google Scholar 

  82. Tanaka S, Hattori S, Kurata T et al. Both the SH2 and SH3 domains of human CRK protein are required for neuronal differentiation of PC12 cells. Mol Cell Biol 1993; 13:4409–4415.

    PubMed  CAS  Google Scholar 

  83. Matsuda M, Hashimoto Y, Muroya K et al. CRK protein binds to two guanine nucleotide-releasing proteins for the RAS family and modulates nerve growth factor-induced activation of RAS in PC12 cells. Mol Cell Biol 1994; 14:5495–5500.

    PubMed  CAS  Google Scholar 

  84. Cordon-Cado C, Tapley P, Jing S. The TRK tyrosine kinase mediates the mitogenic properties of nerve growth factor and neurotrophin.3. Cell 1991; 66:173–183.

    Google Scholar 

  85. Suen K-L, Bustelo XR, Pawson T et al. Molecular cloning of the mouse Grb2 gene: Differential interaction of the Grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors. Mol Cell Biol 1993; 13:5500–5512.

    PubMed  CAS  Google Scholar 

  86. Mayer BJ, Hamaguchi M, Hanafusa H. A novel viral oncogene with structural similarity to phospholipase C. Nature (London) 1988; 332:272–275.

    CAS  Google Scholar 

  87. Hempstead BL, Birge RB, Fajardo JE et al. Expression of the v-Crk oncogene product in PC12 cells results in rapid differentiation by both nerve growth factor- and epidermal growth factor-dependent pathways. Mol Cell Biol 1994; 14:1964–1971.

    PubMed  CAS  Google Scholar 

  88. Knudsen BS, Feilet SM, Hanafusa H. Four proline-rich sequences of the guanine-nucleotide exchange factor C3G bind with unique specificity to the first Src homology 3 domain of Crk. J Biol Chem 1994; 269: 32781–32787.

    PubMed  CAS  Google Scholar 

  89. Klein R, Jing S, Nanduri V et al. The TRK proto-oncogene encodes a receptor for nerve growth factor. Cell 1991; 65:189–197.

    PubMed  CAS  Google Scholar 

  90. Dikic I, Batzer AG, Blaikie P et al. She binding to nerve growth factor receptor is mediated by the phosphotyrosine interaction domain. J Biol Chem 1995; 270:15125–15129.

    PubMed  CAS  Google Scholar 

  91. Saltiel AR, Decker SJ. Cellular mechanisms of signal transduction for neurotrophins. BioEssays 1994; 16:405–411.

    PubMed  CAS  Google Scholar 

  92. Wood KW, Qi H, D’Arcangelo G et al. The cytoplasmic raf oncogene induces a neuronal phenotype in PC12 cells: a potential role for cellular raf kinases in neuronal growth factor signal transduction. Proc Natl Acad Sci USA 1993; 90:5016–5020.

    PubMed  CAS  Google Scholar 

  93. Nakafuku M, Kaziro Y. Epidermal growth factor and transforming growth factor-alpha can induce neuronal differentiation of rat pheochromocytoma PC12 cells under particular culture conditions. FEBS Lett 1993; 315:227–232.

    PubMed  CAS  Google Scholar 

  94. Ng NF, Shooter EM. Activation of p21 RAS by nerve growth factor in embryonic sensory neurons and PC12 cells. J Biol Chem 1993; 268:25329–25333.

    PubMed  CAS  Google Scholar 

  95. BoRASio GD, Markus A, Wittinghofer A et al. Involvement of RAS p21 in neutotrophin-induced response of sensory, but not sympathetic neurons. J Cell Biol 1993; 121:665–672.

    PubMed  CAS  Google Scholar 

  96. Peng X, Greene LA, Kaplan DR et al. Deletion of a conserved juxtamembrane sequence in TRK abolishes NGF-promoted neurogenesis. Neuron 1995; 15:395–406.

    PubMed  CAS  Google Scholar 

  97. Nicola NA. An introduction to the cytokines. In: Nicola NA, ed. Guidebook to Cytokines and Their Receptors 1st ed. New York: Oxford University Press.

    Google Scholar 

  98. Burgess AW, Tran TT. Grocyt Database. http://www/ludwig.edu.au/www/ grocyt.html

  99. Simpson RJ, Hammacher A, Smith DK et al. Interleukin-6: structure-function relationships. Protein Science 1996; in press.

    Google Scholar 

  100. Roussel MF. Signal transducton by the macrophage-colony-stimulating factor receptor (CSF-1R). J Cell Sci Suppl 1994; 18:105–108.

    PubMed  CAS  Google Scholar 

  101. Turner AM, Bennett LG, Lin NL et al. Identification and characterization of a soluble c-kit receptor produced by human hematopoietic cell lines. Blood 1995; 85:2052–2058.

    PubMed  CAS  Google Scholar 

  102. Saleem A, Kharbanda S, Yuan ZM et al. Monocyte colony-stimulating factor stimulates binding of phosphatidylinositol 3-kinase to Grb2.Sos complexes in human monocytes. J Biol Chem 1995; 270:10380–10383.

    PubMed  CAS  Google Scholar 

  103. Lioubin MN, Myles GM, Carlberg K et al. She, Grb2, Sosl, and a 150 kilodalton tyrosine-phosphorylated protein form complexes with Fms in hematopoietic cells. Mol Cell Biol 1994; 14:5682–5691.

    PubMed  CAS  Google Scholar 

  104. Brugger W, Mocklin W, Heimfeld S et al. Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1 beta (IL-1 beta), IL-6, IL-3, interferon-gamma, and erythropoietin. Blood 1993; 81:2579–2584.

    PubMed  CAS  Google Scholar 

  105. Baker DA, Mäher J, Roberts IA et al. Evidence that RAS and myc mediate the synergy between SCF or M-CSF and other haemopoietic growth factors. Leukemia 1994; 8:1970–1981.

    PubMed  CAS  Google Scholar 

  106. Kharbanda S, Saleem A, Yuan Z et al. Stimulation of human monocytes with a macrophage colony-stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin. Proc Natl Acad Sci USA 1995; 92:6132–6136.

    PubMed  CAS  Google Scholar 

  107. Shuai K. Interferon-activated signal transduction to the nucleus. Curr Biol 1994; 6:253–259.

    CAS  Google Scholar 

  108. Velazquez L, Fellows M, Stark GR. A protein tyrosine kinase in the interferon α/ß signaling pathway. Cell 1992; 70:313–322.

    PubMed  CAS  Google Scholar 

  109. Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell 1994; 76:253–262.

    PubMed  CAS  Google Scholar 

  110. Miyajima A, Mui AL, Ogorochi T et al. Receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood 1993; 82:1960–1974.

    PubMed  CAS  Google Scholar 

  111. Graves JD, Downward J, Izquierdo-Pastor M et al. The growth factor IL-2 activates p21RAS proteins in normal human T lymphocytes. J Immunol 1992; 148:2417–1422.

    PubMed  CAS  Google Scholar 

  112. Minami Y, Taniguchi T. IL-2 signaling: recruitment and activation of multiple protein tyrosine kinases by the components of the IL-2 receptor. Curr Biol 1995; 7:156–162.

    CAS  Google Scholar 

  113. Satoh T, Minami Y, Kono T et al. Interleukin-2-induced activation of RAS requires two domains of interleukin 2 receptor beta subunit, the essential region for growth stimulation and Lck-binding domain. J Biol Chem 1992; 267:25423–25427.

    PubMed  CAS  Google Scholar 

  114. Kobayashi N, Kono T, Hatakeyama M et al. Functional coupling of the src-family protein tyrosine kinases p59fyn and p53/56lyn with the interleukin-2 receptor: implications for redundancy and pleiotropism in cytokine signal transduction. Proc Natl Acad Sci USA 1993; 90:4201–4205.

    PubMed  CAS  Google Scholar 

  115. Mills GB, Schmandt R, Gibson S et al. Transmembrane signaling by the interleukin-2 receptor: progress and conundrums. Semin Immunol 1993; 5:345–364.

    PubMed  CAS  Google Scholar 

  116. Bustelo XR, Suen K-L, Leftheris K et al. Vav cooperates with Ras to transform rodent fibroblasts but is not a RAS GDP/GTP exchange factor. Oncogene 1994; 9:2405–2413.

    PubMed  CAS  Google Scholar 

  117. Izquierdo M, Cantrell DA. Protein tyrosine kinases couple the interleukin-2 receptor to p21RAS. Eur J Immunol 1993; 23:131–135.

    PubMed  CAS  Google Scholar 

  118. Brizuela L, Ulug ET, Jones MA et al. Induction of interleukin-2 transcription by the hamster polyomavirus middle T antigen: a role for Fyn in T cell signal transduction. Eur J Immunol 1995; 25:385–393.

    PubMed  CAS  Google Scholar 

  119. Welham MJ, Dechert U, Leslie KB et al. Interleukin (IL)-3 and granulocyte/macrophage colony-stimulating factor, but not IL-4, induce tyrosine phosphorylation, activation, and association of SHPTP2 with Grb2 and phosphatidylinositol 3′-kinase. J Biol Chem 1994; 269:23764–23768.

    PubMed  CAS  Google Scholar 

  120. Welham MJ, Duronio V, Leslie KB et al. Multiple hemopoietins, with the exception of interleukin-4, induce modification of She and mSosl, but not their translocation. J Biol Chem 1994; 269:21165–21176.

    PubMed  CAS  Google Scholar 

  121. Lanfrancone I, Pelicci G, Brizzi MF et al. Overexpression of She proteins potentiates the proliferative response to the granulocyte-macrophage colony-stimulating factor and recruitment of Grb2/SoS and Grb2/p140 complexes to the beta receptor subunit. Oncogene 1995; 10:907–917.

    PubMed  CAS  Google Scholar 

  122. Feng, G-S, Hui C-C, Pawson T. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science 1993; 259: 11607–1611.

    Google Scholar 

  123. Alam R, Pazdrak K, Stafford S et al. The interleukin-5/receptor interaction activates Lyn and Jak2 tyrosine kinases and propagates signals via the RAS-Raf-1-MAP kinase and the Jak-STAT pathways in eosinophils. Int Arch Allergy Immunol 1995; 107:226–227.

    PubMed  CAS  Google Scholar 

  124. Hirano T, Matsuda T, Nakajima K. Signal transduction through gp130 that is shared among the receptors for the interleukin 6 related cytokine subfamily. Stem Cells Dayt 1994; 12:262–277.

    PubMed  CAS  Google Scholar 

  125. Nakafuku M, Satoh T, Kaziro Y. Differentiation factors, including nerve growth factor, fibroblast growth factor, and interleukin-6, induce an accumulation of an active RAS.GTP complex in rat pheochromocytoma PC12 cells. J Biol Chem 1992; 267:19448–19454.

    PubMed  CAS  Google Scholar 

  126. Murakami M, Hibi M, Nakagawa N et al. IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 1993; 260:1808–1810.

    PubMed  CAS  Google Scholar 

  127. Ernst M, Gearing DP et al. Function and biochemical association of Hck with the LIF-IL-6 receptor signal transducing subunit gp130 in embryonic stem cells. EMBO J 1994; 13:1574–1584.

    PubMed  CAS  Google Scholar 

  128. Barnard JA, Graves-Deal R, Pittelkow MR et al. Auto- and cross-induction within the mammalian epidermal growth factor-related peptide family. J Biol Chem 1994; 269:22817–22822.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 R.G. Landes Company

About this chapter

Cite this chapter

Burgess, A.W. (1996). Mammals I: Regulation of RAS Activation. In: Regulation of the RAS Signaling Network. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1183-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1183-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8502-1

  • Online ISBN: 978-1-4613-1183-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics