Skip to main content

Hydraulic Architecture of Woody Tropical Plants

  • Chapter
Tropical Forest Plant Ecophysiology

Abstract

This chapter reviews how hydraulic architectures of tropical trees and lianas (woody vines) influence the flow of water from roots to leaves. The hydraulic design potentially can limit plant water relations, gas exchange, successional distribution, and even the maximum height (or length, in the case of lianas) that a species can attain. Important parameters include vulnerability to drought-induced cavitation (since embolism reduces hydraulic conductance), root pressures (since these potentially could result in re-filling of conduits following cavitation events, thereby increasing conductance), leaf specific conductivity (which, together with transpiration rates, can predict pressure gradiĀ­ents throughout the plant), and water storage capacity (since this might determine the ability to survive water shortage). Some of the issues that are dealt with here are the impact of vessel diameter on drought- and freezing-induced embolism, the role of root pressures in the occasional removal of embolisms, and the ways in which the hydraulic architecture differs in different growth forms such as trees, shrubs, lianas, and hemiepiphytes. The ecological and physiological trade-offs of different architectures are discussed, and comparisons are made with temperate plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beck, E., Scheibe, K. & Hansen, J. (1987) Mechanisms of freezing avoidance and freezing tolerance in tropical alpine plants. Plant Cold Hardiness (ed. P. H. Li) Alan R. Liss, New York.

    Google ScholarĀ 

  • Borghetti, M., Edwards, W. R. N., Grace, J., Jarvis, P. G. & Raschi A. (1991) The refilling of embolized xylem in Pinus sylvestris L. Plant, Cell and Environment, 14, 357ā€“369.

    ArticleĀ  Google ScholarĀ 

  • Brenan, J. P. M. (1967) Flora of Tropical East Africa. Part 2, Caesal-pinioideae. Crown Agents for Oversea Governments and Administrations, London, p 215.

    Google ScholarĀ 

  • Calkin, H. W., Gibson, A. C. & Nobel, P. S. (1986) Biophysical model of xylem conductance in tracheids of the fern Pteris vittata. Journal o f Experimental Botany, 37, 1054ā€“1064.

    ArticleĀ  Google ScholarĀ 

  • Chiu, S.-T. & Ewers, F. W. (1992) Xylem structure and water transport in a twiner, a scrambler, and a shrub of Lonicera (Caprifoliaceae). Trees, 6, 216ā€“224.

    ArticleĀ  Google ScholarĀ 

  • Chiu, S.-T. & Ewers, F. W. (1993) The effect of segment length on conducĀ­tance measurements in Lonicera fragrantissima. Journal of Experimental Botany, 44, 175ā€“181.

    ArticleĀ  Google ScholarĀ 

  • Cochard, H. & Tyree, M. T. (1990) Xylem dysfunction in Quercus: Vessel sizes, tyloses, cavitation, and seasonal changes in embolism. Tree PhysiolĀ­ogy, 6, 393ā€“407.

    Google ScholarĀ 

  • Cochard, H., Cruiziat, P. & Tyree, M. T. (1992) Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothĀ­esis and possible problems for pressure-volume analysis. Plant Physiology, 100, 205ā€“209.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Cochard, H., Ewers, F. W. & Tyree, M. T. (1994) Water relations of a tropical vinelike bamboo (Rhipidocladum racemiflorum): Root pressures, vulnerĀ­ability to cavitation, and seasonal changes in embolism. Journal of ExperiĀ­mental Botany, 45, 1085ā€“1089.

    ArticleĀ  Google ScholarĀ 

  • Croat, T. B. (1978) Flora of Barro Colorado Island. Stanford University Press, Stanford, California.

    Google ScholarĀ 

  • Crombie D. S., Hipkins, M. F. & Milburn, J. A. (1985) Gas penetration of pit membranes in the xylem of Rhododendron as the cause of acoustically detectable sap cavitation. Australian Journal of Plant Physiology, 12, 445ā€“453.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dixon, M. A., Butt, J. A., Murr, D. P. & Tsujtta, M. J. (1988) Water relations of cut greenhouse roses: The relationship between stem water potential hydraulic conductance and cavitation. Scientific Horticulture, 63, 109ā€“118.

    ArticleĀ  Google ScholarĀ 

  • Edwards, W. R. N., Jarvis, P. G., Grace, J. & Moncrieff, J. B. (1994) Reversing cavitation in tracheids of Pinus sylvestris L. under negative water potentials. Plant, Cell and Environment, 17, 389ā€“397

    ArticleĀ  Google ScholarĀ 

  • Ewers, F. W. (1985) Xylem structure and water conduction in conifer trees, dicot trees, and lianas. International Association of Wood Anatomists BullĀ­etin, 6, 309ā€“317.

    Google ScholarĀ 

  • Ewers, F. W. & Cruiziat, P. (1990) Measuring water transport and storage. Techniques and Approaches in Forest Tree Ecophysiology (eds. J. P. Lassoie & T. M. Hinckley) CRC Press, Boca Raton, Florida, 91ā€“115.

    Google ScholarĀ 

  • Ewers, F. W. & Fisher, J. B. (1991) Why vines have narrow stems: HistologiĀ­cal trends in Bauhinia (Fabaceae). Oecologia, 88, 233ā€“237.

    ArticleĀ  Google ScholarĀ 

  • Ewers, F. W., Cochard, H. & Tyree, M. T. (submitted) A survey of root pressures in vines of a tropical lowland forest. Oecologia.

    Google ScholarĀ 

  • Ewers, F. W., Fisher, J. B. & Chiu, S. -T. (1989) Water transport in the liana Bauhinia fassoglensis (Fabaceae). Plant Physiology, 91, 1625ā€“1631.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ewers, F. W., Fisher, J. B. & Fichtner, K. (1991) Water flux and xylem structure in vines. The Biology of Vines (eds. F. E. Putz and H. A. Mooney) Cambridge University Press, Cambridge, 127ā€“160.

    Google ScholarĀ 

  • Fichtner, K. & Schulze, E. D. (1990) Xylem flow in tropical vines as measĀ­ured by a steady state heating method. Oecologia, 82, 355ā€“361.

    ArticleĀ  Google ScholarĀ 

  • Gartner, E. L. (1991) Stem hydraulic properties of vines vs. shrubs of westĀ­ern poison oak, Toxicodendron diversilobum. Oecologia, 87, 180ā€“189.

    ArticleĀ  Google ScholarĀ 

  • Gartner, B. L., Bullock, S. H., Mooney, H. A., Brown, V. B. & Whitebeck, J. L. (1990) Water transport properties of vine and tree stems in a tropical deciduous forest. American Journal of Botany, 77, 742ā€“749.

    ArticleĀ  Google ScholarĀ 

  • Gasson, P. & Dobbins, D. R. (1991) Wood anatomy of the Bignoniaceae, with a comparison of trees and lianas. International Association of Wood AnatĀ­omists Bulletin, 12, 389ā€“417.

    Google ScholarĀ 

  • Gentry, A. H. (1991) The distribution and evolution of climbing plants. The Biology of Vines (eds. F. E. Putz & H. A. Mooney) Cambridge University Press, Cambridge, pp 3ā€“49.

    Google ScholarĀ 

  • Hammel, T. D. (1967) Freezing of xylem sap without cavitation. Plant PhysiĀ­ology 42, 55ā€“66.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hargrave, K. R., Kolb, K. J., Ewers, F. W. & Davis, S. D. (1994) Conduit diameter and drought-induced embolism in Salvia mellifera (Labiatae). New Phytologist, 126, 695ā€“705.

    ArticleĀ  Google ScholarĀ 

  • Jarbeau, J., Ewers, F. W. & Davis, S. D. (1994) The mechanism of xylem dysfunction in two chaparral shrubs. Plant, Cell and Environment, in press.

    Google ScholarĀ 

  • Krog, J. O., Zachariassen, K. E., Larsen, B. & Smidsrod D. (1979) Thermal buffering in Afro-alpine plants due to nucleating agent-induced water freezing. Nature, 282, 300ā€“301.

    ArticleĀ  Google ScholarĀ 

  • Langan, S. J. & Davis, S. D. (1994) Xylem dysfunction caused by freezing and water stress in two species of co-occurring chaparral shrubs. Bulletin of the Ecological Society of America, in press.

    Google ScholarĀ 

  • Lewis, A. M., Harnden, V. D. & Tyree, M. T. (1995). Collapse of water-stress emboli in the tracheids of Thuja occidentalis L. Plant Physiology, in press

    Google ScholarĀ 

  • Lo Gullo, M. A. & Salleo, S. (1991) Three different methods for measuring xylem cavitation and embolism: A comparison. Annals of Botany, 67, 417ā€“424.

    Google ScholarĀ 

  • Machado, J.-L. & Turee, M. T. (1994) Patterns of hydraulic architecture and water relations of two tropical canopy trees with contrasting leaf phenoloĀ­gies: Ochroma pyramidale and Pseudobombax septenatum. Tree PhysiolĀ­ogy, 14, 219ā€“240.

    Google ScholarĀ 

  • Meinzer, F. C, Goldstein, G., Neufeld, H. S., Grantz, D. A. & Crisosto, G. M. (1992) Hydraulic architecture of sugarcane in relation to patterns of water use during plant development. Plant Cell and Environment. 15, 471ā€“477.

    ArticleĀ  Google ScholarĀ 

  • Mooney, H. A. & Gartner B. L. (1991) Reserve economy of vines. The Biology of Vines (eds. F. E. Putz & H. A. Mooney) Cambridge University Press, Cambridge, pp 166ā€“179.

    Google ScholarĀ 

  • PatƱo, S., Tyree, M. T., & Herre, E. A. (1995) Comparison of hydraulic architecture of woody plants of differing phylogony and growth form with special reference to free-standing and hemiepiphytic Ficus species from Panama. New Phytologist, 129, 125ā€“134.

    ArticleĀ  Google ScholarĀ 

  • Pickard, W. F. (1989) How might a tracheary element which is embolized by day be healed by night? Journal of Theoretical Biology, 141, 259ā€“279.

    ArticleĀ  Google ScholarĀ 

  • Putz, F. E. (1983) Liana biomass and leaf area of a ā€œtierra firmeā€ forest in the Rio Negro Basin, Venezuela. Biotropica, 15, 185ā€“189.

    ArticleĀ  Google ScholarĀ 

  • Putz, F. W. & Mooney, H. A. (1991) The Biology of Vines. Cambridge UniĀ­versity Press, Cambridge.

    Google ScholarĀ 

  • Salleo, S. & Lo Gullo, M. A. (1986) Xylem cavitation in nodes and inter-nodes of whole Chorisia insignis H. B. and K. plants subjected to water stress: Relations between xylem conduit size and cavitation. Annals of Botany, 58, 431ā€“434.

    ArticleĀ  Google ScholarĀ 

  • Salleo, S. & Lo Gullo, M. A. (1989) Xylem cavitation in nodes and inter-nodes of Vitis vinifera L. plants subjected to water stress. Limits of restoĀ­ration of water conduction in cavitated xylem conduits. Structural and Functional Responses to Environmental Stresses (eds. K. H. Keeb, H. Richter & T. M. Hinckley) SFB Academic Publishing, The Hague, The Netherlands.

    Google ScholarĀ 

  • Sperry, J. S. & Sullivan, J. E. M. (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiology, 100, 603ā€“613.

    ArticleĀ  Google ScholarĀ 

  • Sperry, J. S. & Tyree, M. T. (1988) Mechanism of water stress-induced xylem embolism. Plant Physiology, 88, 581ā€“587.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sperry, J. S. & Tyree, M. T. (1990) Waterstress-induced xylem embolism in three species of conifers. Plant, Cell and Environment, 13, 427ā€“436.

    ArticleĀ  Google ScholarĀ 

  • Sperry, J. S., Donnelly, J. R. & Tyree, M. T. (1987) A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and EnvironĀ­ment, 11, 35ā€“40.

    ArticleĀ  Google ScholarĀ 

  • Sperry, J. S., Holbrook, N. M., Zimmermann, M. H. & Tyree, M. T. (1987) Spring filling of xylem vessels in wild grapevine. Plant Physiology, 83, 414ā€“417.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sucoff, E. (1969) Freezing of conifer xylem sap and the cohesion-tension theory. Physiologia Plantarum, 22, 424ā€“431.

    ArticleĀ  Google ScholarĀ 

  • Teramura, A. H., Gold, W. G. & Forseth, I. N. (1991) Physiological ecology of mesic, temperate woody vines. The Biology of Vines (eds. F. E. Putz & H. A. Mooney) Cambridge University Press, Cambridge.

    Google ScholarĀ 

  • Tyree, M. T. & Dixon, M. A. (1986) Water stress-induced cavitation and embolism in some woody plants. Physiologia Plantarum, 66, 397ā€“405.

    ArticleĀ  Google ScholarĀ 

  • Tyree, M. T. and Ewers, F. W. (1991) The hydraulic architecture of trees and other woody plants. New Phytologist, 119, 345ā€“360.

    ArticleĀ  Google ScholarĀ 

  • Tyree, M. T., Davis, S. D., & Cochard, H. (1995). Biophysical perspectives of xylem evolution: Is there a trade-off of hydraulic efficiency for vulnerability to dysfunction? IAWA Journal, 15, in press.

    Google ScholarĀ 

  • Tyree, M. T. & Sperry, J. S. (1989) The vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Molecular Biology, 40, 19ā€“38.

    ArticleĀ  Google ScholarĀ 

  • Tyree, M. T. & Yang, S. (1990) Water-storage capacity of Thuja, Tsuga, and Acer stems measured by dehydration isotherms: Contributions of capillary water and cavitation. Planta, 182, 420ā€“426.

    ArticleĀ  Google ScholarĀ 

  • Tyree, M. T. & Yang, S. (1992) Hydraulic conductivity recovery versus water pressure in xylem of Acer saccharum. Plant Physiology, 100, 669ā€“676.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Tyree, M. T., Patino, S., Bennink, J., & Alexander, J. (1995). Dynamic measurements of root hydraulic conductance using a high-pressure flowĀ­meter for use in the laboratory and field. Journal of Experimental Botany, in press.

    Google ScholarĀ 

  • Tyree, M. T., Snyderman, D. A., Wilmot, T. R., Machado J.-L. (1991) Water relations and hydraulic architecture of a tropical tree (Schefflera mo-rototoni): Data, models, and a comparison with two temperate species (Acer saccharum and Thuja occidentalis). Plant Physiology, 96, 1105ā€“1113.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Tyree, M. T., Yang, S., Cruiziat, P., & Sinclair, B. (1994) Novel methods of measuring hydraulic conductivity of tree root systems and interpretation using AMAIZED: A maize-root dynamic model for water and solute transĀ­port. Plant Physiology, 104, 189ā€“199.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Yang, S. & Tyree, M. T. (1992) A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum. Plant, Cell and Environment, 15, 633ā€“643.

    ArticleĀ  Google ScholarĀ 

  • Yang, S. & Tyree, M. T. (1994) Hydraulic architecture of Acer saccharum and A. rubrum: Comparison of branches to whole trees and the contribution of leaves to hydraulic resistance. Journal of Experimental Botany, 45, 179ā€“186.

    ArticleĀ  Google ScholarĀ 

  • Zimmermann, M. T. (1983) Xylem Structure and the Ascent of Sap. Springer-Verlag, Berlin.

    Google ScholarĀ 

  • Zotz, G., Tyree, M. T. & Cochard, H. (1994) Hydraulic architecture, water relations and vulnerability to cavitation of Clusia uvitana: A C3-CAM tropiĀ­cal hemiepiphyte. New Phytologist, 127, 287ā€“295.

    ArticleĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1996 Chapman & Hall

About this chapter

Cite this chapter

Tyree, M.T., Ewers, F.W. (1996). Hydraulic Architecture of Woody Tropical Plants. In: Mulkey, S.S., Chazdon, R.L., Smith, A.P. (eds) Tropical Forest Plant Ecophysiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1163-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1163-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8493-2

  • Online ISBN: 978-1-4613-1163-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics