Skip to main content

Comparative Ecophysiology of Mangrove Forest and Tropical Lowland Moist Rainforest

  • Chapter
Tropical Forest Plant Ecophysiology

Abstract

“Mangrove” is an ecological term referring to a taxonomically diverse association of woody trees and shrubs that form the dominant vegetation in tidal, sahne wetlands along tropical and subtropical coasts (Tomlinson, 1986). There, moist lowland rainforest gives way to mangrove vegetation where the forest experiences tidal inundation with saline water. There is an abrupt transition from rainforest, with its high diversity of tree species, to mangrove forest of relatively few species. The diverse assemblage of life forms so common in rainforest gives way to forest where vines, palms, ferns, and epiphytes are poorly represented and conifers are absent (Tomlinson, 1986). For example, Tomlinson (1986) conservatively recorded 114 species from 66 genera in his treatment of the floristics of mangrove forests worldwide, with species richness being greatest in the Indo-Pacific region. Thus, fewer mangrove species are found worldwide than one might encounter in a few hectares of moist tropical forest, particularly in areas supporting the greatest biodiversity (Whitmore, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, Z & Muller, G. J. (1985) Photosynthetic gas exchange of the mangrove, Rhizophora stylosa Griff., in its natural environment. Oecologia, 65, 449–455.

    Google Scholar 

  • Andrews, T. J., Clough, B. F. & Muller, G. J. (1984) Photosynthetic gas exchange and carbon isotope ratios of some mangroves in North Queensland. Physiology and Management of Mangroves (ed. H. J. Teas) Tasks for Vegetation Science, Vol. 9, W. Junk Publishers, The Hague, pp 15–23.

    Google Scholar 

  • Atkinson, M. R., Findlay, G. P., Hope, A. B., Pitman, M. G., Saddler, H. D.W & West, K. R. (1967) Salt regulation in the mangrove Rhizophora mucronata Lam and Aegialitis annulata R. Br. Australian Journal of Biological Sciences, 20, 589–599.

    CAS  Google Scholar 

  • Austin, M. P. (1985) Continuation concept, ordination methods, and niche theory. Annual Review of Ecology and Systematics, 16, 39–61.

    Google Scholar 

  • Ball, M. C. (1980) Patterns of secondary succession in a mangrove forest of southern Florida. Oecologia, 44, 226–234.

    Google Scholar 

  • Ball, M. C. (1988a) Ecophysiology of mangroves. Trees, 2, 129–142.

    Google Scholar 

  • Ball, M. C. (1988b) Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning, and salt balance. Australian Journal of Plant Physiology, 15, 447–464.

    Google Scholar 

  • Ball, M. C. & Anderson, J. M. (1986) Sensitivity of photosystem II to NaCl in relation to salinity tolerance. Comparative studies with thylakoids of the salttolerant mangrove, Avicennia marina, and the salt-sensitive pea, Pisum sativum. Australian Journal of Plant Physiology, 13, 689–698.

    CAS  Google Scholar 

  • Ball, M. C. & Critchley, C. (1982) Photosynthetic responses to irradiance by the grey mangrove, Avicennia marina, grown under different light regimes. Plant Physiology, 74, 7–11.

    Google Scholar 

  • Ball, M. C. & Farquhar, G. D. (1984a) Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long-term salinity and humidity conditions. Plant Physiology, 74, 1–6.

    PubMed  CAS  Google Scholar 

  • Ball, M. C. & Farquhar, G. D. (1984b) Photosynthetic and stomatal responses of the grey mangrove, Avicennia marina, to transient salinity conditions. Plant Physiology, 74, 7–11.

    PubMed  CAS  Google Scholar 

  • Ball, M. C. & Passioura, J. B. (1993) Carbon gain in relation to water use: Photosynthesis in mangroves. Ecophysiology of Photosynthesis (eds. E.-D. Schulze & M. M. Caldwell) Springer-Verlag, Berlin, pp 247–259.

    Google Scholar 

  • Ball, M. C. & Pidsley, S. M. (1995) Growth responses to salinity in relation to distribution of two mangrove species, Sonneratia alba and S. lanceolata, in northern Australia. Functional Ecology, 9, 77–85.

    Google Scholar 

  • Ball, M. C., Chow, W. S. & Anderson, J. M. (1987) Salinity-induced potassium deficiency causes loss of functional photosystem II in leaves of the grey mangrove, Avicennia marina, through depletion of the atrazine-binding polypeptide. Australian Journal of Plant Physiology, 15, 351–361.

    Google Scholar 

  • Ball, M. C., Cowan, I. R. & Farquhar, G. D. (1988) Maintenance of leaf temperature and the optimization of carbon gain in relation to water loss in a tropical mangrove forest. Australian Journal of Plant Physiology, 15, 263–276.

    Google Scholar 

  • Björkman, O., Demmig, B. & Andrews, T. J. (1988) Mangrove photosynthesis: Response to high irradiance stress. Australian Journal of Plant Physiology, 15, 43–61.

    Google Scholar 

  • Bolaños, J. & Longstreth, D. (1984) Salinity effects on water potential components and bulk elastic modulus of Alternanthera philoxeroides (Mart.) Griseb. Plant Physiology, 75, 281–284.

    PubMed  Google Scholar 

  • Boto, K. G. (1982) Nutrient and organic fluxes in mangroves. Mangrove Ecosystems in Australia (ed. B. F. Clough) Australian National University Press, Canberra, pp 239–257.

    Google Scholar 

  • Boto, K. G. & Wellington, J. T. (1983) Phosphorus and nitrogen nutritional status of a northern Australian mangrove forest. Marine Ecology Progress Series, 11, 63–69.

    Google Scholar 

  • Boto, K. G. & Wellington, J. T. (1984) Soil characteristics and nutrient status in a northern Australian mangrove forest. Estuaries, 7, 61–69.

    CAS  Google Scholar 

  • Bradley, P. M. & Morris, J. T. (1990) Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alterniflora. Ecology, 71, 282–287.

    CAS  Google Scholar 

  • Camilleri, J. C. & Ribi, G, (1983) Leaf thickness of mangroves (Rhizophora mangle) growing in different salinities. Biotropica, 15, 139–141.

    Google Scholar 

  • Chapman, V. J. (1944) 1939 Cambridge University expedition to Jamaica. I. A study of the botanical processes concerned in the development of the Jamaican shoreline. Journal of the Linnean Society of London B, 52, 407–447.

    Google Scholar 

  • Cheeseman, J. M., Clough, B. F., Carter, D. R., Lovelock, C. E., Eong, O. J. & Sim, R. G. (1991) The analysis of photosynthetic performance in leaves under field conditions: A case study using Bruguiera mangroves. Photosynthesis Research, 29, 11–22.

    CAS  Google Scholar 

  • Chesson, P. L. (1990) Geometry, heterogeneity, and competition in variable environments. Philosophical Transactions of the Royal Society of London, Series B, 330, 165–173.

    Google Scholar 

  • Chow, W. S. (1994) Photoprotection and photoinhibition. Molecular Processes of Photosynthesis (ed. J. Barber) Vol. 10, Advances in Molecular and Cell Biology, JAI Press, Inc., Greenwich, Connecticut, pp 151–196.

    Google Scholar 

  • Clarke, L. D. & Hannon, N. J. (1970) The mangrove swamp and salt marsh communities of the Sydney district. III. Plant growth in relation to salinity and waterlogging. Journal of Ecology, 58, 351–369.

    Google Scholar 

  • Clarke, P. J. & Myerscough, P. J. (1993) The intertidal distribution of the grey mangrove (Avicennia marina) in southeastern Australia: The effects of physical conditions, interspecific competition, and predation on propagule establishment and survival. Australian Journal of Ecology, 18, 307–315.

    Google Scholar 

  • Clough, B. F. (1984) Growth and salt balance of the mangroves Avicennia marina (Forsk.) Vierh. and Rhizophora stylosa Griff, in relation to salinity. Australian Journal of Plant Physiology, 11, 419–430.

    CAS  Google Scholar 

  • Clough, B. F. & Sim, R. G. (1989) Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapor pressure deficit. Oecologia, 79, 38–44.

    Google Scholar 

  • Cowan, I. R. (1982) Regulation of water use in relation to carbon gain in higher plants. Physiological Plant Ecology II. Water Relations and Carbon Assimilation (eds. O. L. Lange, P. S. Nobel, C. B. Osmond, & H. Ziegler) Springer-Verlag, Berlin, pp 589–614.

    Google Scholar 

  • Cowan, I. R. (1986) Economics of carbon fixation in higher plants. On the Economy of Plant Form and Function (ed. T. J. Givnish) Cambridge University Press, Cambridge, pp 133–170.

    Google Scholar 

  • Cowan, I. R. & Farquhar, G. D. (1977) Stomatal function in relation to leaf metabolism and environment. Integration of Activity in the Higher Plant (ed. D. H. Jennings) Cambridge University Press, Cambridge, pp 471–505.

    Google Scholar 

  • Curran, M. (1985) Gas movements in the roots of Avicennia marina (Forsk.) Vierh. Australian Journal of Plant Physiology, 12, 97–108.

    Google Scholar 

  • Davie, J. D. S. (1988) Differences in shoot architecture in mature communities of the tropical mangrove Avicennia marina (Forsk.) Vierh. Proceedings of the Ecological Society of Australia, 15, 213–219.

    Google Scholar 

  • Demmig-Adams, B. (1990) Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochimica et Biophysica Acta, 1020, 1–24.

    CAS  Google Scholar 

  • Demmig-Adams, B., Winter, K., Krüger, A. & Czygan, F.-C. (1989) Zeaxanthin and the induction and relaxation kinetics of the dissipation of excess excitation energy in leaves in 2% O2, 0% CO2. Plant Physiology, 90, 887–893.

    PubMed  CAS  Google Scholar 

  • Downton, W. J. S. (1982) Growth and osmotic relation of the mangrove Avicennia marina as influenced by salinity. Australian Journal of Plant Physiology, 9, 519–528.

    CAS  Google Scholar 

  • Drew, M. C. & Dikumwin, E. (1985) Sodium exclusion from the shoots by roots of Zea mays (cv. LG 11) and its breakdown with oxygen deficiency. Journal of Experimental Botany, 36, 55–62.

    CAS  Google Scholar 

  • Farquhar, G. D., Ball, M. C., von Caemmerer, S. & Roksandic, Z. (1982) Effect of salinity and humidity on 13C values of halophytes — evidence for diffusional isotope fractionation determined by the ratio of intercellular/atmospheric CO2 under different environmental conditions. Oecologia, 52, 121–137.

    Google Scholar 

  • Field, C. D. (1984) Movement of ions and water into the xylem sap of tropical mangroves. Physiology and Management of Mangroves (ed. H. J. Teas) W. Junk Publishers, The Hague, pp 49–52.

    Google Scholar 

  • Flowers, T. J., Hajibagheri, M. A. & Clipson, N. J. W. (1986) Halophytes. Quarterly Review of Biology, 61, 313–337.

    Google Scholar 

  • Gill, A. M. & Tomunson, P. B. (1977) Studies on the growth of red mangrove (Rhizophora mangle L.). 4. The adult root system. Biotropica, 9, 145–155.

    Google Scholar 

  • Greenway, H. & Osmond, C. B. (1972) Salt responses of enzymes from species differing in salt tolerance. Plant Physiology, 49, 256–259.

    PubMed  CAS  Google Scholar 

  • Harvey, H. W. (1966) The Chemistry and Fertility of Seawater. Cambridge University Press, Cambridge.

    Google Scholar 

  • Howes, B. W., Howarth, R. W., Teal, J. M. & Valiela, I. (1981) Oxidation-reduction potentials in a salt marsh: Spatial patterns and interactions with primary production. Limnology and Oceanography, 26, 350–360.

    Google Scholar 

  • Hutchings, P. & Saenger, P. (1987) Ecology of Mangroves. Queensland University Press, St. Lucia.

    Google Scholar 

  • Jackson, P. C., Meinzer, F. C., Goldstein, G., Holbrook, N. M., Cavelier, J. & Rada, F. (1993) Environmental and physiological influences on carbon isotope composition of gap and understory plants in a lowland tropical forest. Stable Isotopes and Plant Carbon-Water Relations (eds. J. Ehlerin-ger, A. Hall & G. Farquhar) Academic Press, San Diego, pp 131–140.

    Google Scholar 

  • Jeschke, W. D. (1984) K+ - Na+ exchange at cellular membranes, intracellular compartmentation of cations, and salt tolerance. Salinity Tolerance in Plants: Strategies for Crop Improvement (eds. R. C. Staples & G. H. Toenissen) John Wiley and Sons, New York, pp 37–65.

    Google Scholar 

  • Jeschke, W. D., Pate, J. S. & Atkins, C. A. (1987) Partitioning of K+, Na++, Mg++, and Ca++ through xylem and phloem to component organs of nodulated white lupin under mild salinity. Journal of Plant Physiology, 128, 77–93.

    CAS  Google Scholar 

  • Jimenez, J. A. & Sauter, K. (1991) Structure and dynamics of mangrove forests along a flooding gradient. Estuaries, 14, 49–56.

    Google Scholar 

  • Jones, H. G. & Sutherland, R. A. (1991) Stomatal control of xylem embolism. Plant, Cell and Environment, 14, 607–612.

    Google Scholar 

  • Komiyama, A., Ogino, K., Aksornkoae, S. & Sabharsi, S. (1987) Root biomass of a mangrove forest in southern Thailand. I. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology, 3, 97–108.

    Google Scholar 

  • Krause, G. H. & Behrend, U. (1986) pH-dependent chlorophyll fluorescence quenching indicating a mechanism of protection against photoinhibition of chloroplasts. FEBS Letters, 200, 298–302.

    CAS  Google Scholar 

  • Kriedemann, P. E. (1986) Stomatal and photosynthetic limitations to leaf growth. Australian Journal of Plant Physiology, 13, 15–32.

    Google Scholar 

  • Kriedemann, P. E. & Sands, R. (1984) Salt resistance and adaptation to root-zone hypoxia in sunflower. Australian Journal of Plant Physiology, 11, 287–301.

    CAS  Google Scholar 

  • Krom, M. D. & Berner, R. A. (1980) Adsorption of phosphate in anoxic marine sediments. Limnology and Oceonography, 25, 797–806.

    CAS  Google Scholar 

  • Leigh, R. A., Chater, M., Storey, R. & Johnston, A. E. (1986) Accumulation and sub-cellular distribution of cations in relation to growth of potassium-deficient barley. Plant, Cell and Environment, 9, 595–604.

    CAS  Google Scholar 

  • Lin, G. & Sternberg, L. da S. L. (1992a) Differences in morphology, carbon isotope ratios, and photosynthesis between scrub and fringe mangroves in Florida, USA. Aquatic Botany, 42, 303–313.

    Google Scholar 

  • Lin, G. & Sternberg, L. da S. L. (1992b) Comparative study of water uptake and photosynthetic gas exchange between scrub and fringe red mangrove, Rhizophora mangle L. Oecologia, 90, 399–403.

    Google Scholar 

  • Lin, G. & Sternberg, L. da S. L. (1992c) Effects of growth form, salinity, nutrient, and sulphide on photosynthesis, carbon isotope discrimination, and growth of red mangrove (Rhizophora mangle L.). Australian Journal of Plant Physiology, 19, 509–517.

    CAS  Google Scholar 

  • Lin, G. & Sternberg, L. da S. L. (1993a) Effects of salinity fluctuation on photosynthetic gas exchange and plant growth of the red mangrove (Rhizophora mangle L.). Journal of Experimental Botany, 44, 9–16.

    Google Scholar 

  • Lin, G. & Sternberg, L. da S. L. (1993b) Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants. Stable Isotopes and Plant Carbon-Water Relations (eds. J. Ehleringer, A. Hall & G. Farquhar) Academic Press, San Diego, pp 497–510.

    Google Scholar 

  • Lin, G. & Sternberg, L. da S. L. (1994) Utilization of surface water by red mangrove (Rhizophora mangle L.): An isotopic study. Bulletin of Marine Science, 54, 94–102.

    Google Scholar 

  • Long, S. P. & Baker, N. R. (1986). Saline terrestrial environments. Photosynthesis in Contrasting Environments (eds. N. R. Baker & S. P. Long) Elsevier Science Publishers, Amsterdam, pp 63–102.

    Google Scholar 

  • Lovelock, C. E. & Clough, B. F. (1992) Influence of solar radiation and leaf angle on xanthophyll concentrations in mangroves. Oecologia, 91, 518–525.

    Google Scholar 

  • Lovelock, C. E., Clough, B. F. & Woodrow, I. E. (1992) Distribution and accumulation of ultraviolet-radiation-absorbing compounds in leaves of tropical mangroves. Planta, 188, 143–154.

    CAS  Google Scholar 

  • Macnae, W. (1968) A general account of the fauna and flora of mangrove swamps and forests in the Indo-West-Pacific region. Advances in Marine Biology, 6, 73–270.

    Google Scholar 

  • Mallery, C. H. & Teas, H. J. (1984) The mineral ion relations of mangroves. I. Root cell compartments in a salt excluder and a salt excreter species at low salinities. Plant and Cell Physiology, 25, 1123–1131.

    CAS  Google Scholar 

  • McCree, K. J. (1986) Whole-plant carbon balance during osmotic adjustment to drought and salinity stress. Australian Journal of Plant Physiology, 13, 33–43.

    Google Scholar 

  • McKee, K. L. (1993) Soil physicochemical patterns and mangrove species distribution — Reciprocal effects? Journal of Ecology, 81, 477–487.

    Google Scholar 

  • McKee, K. L. & Mendelssohn, I. A. (1987) Root metabolism in the black mangrove (Avicennia germinans (L.): Response to hypoxia. Environmental and Experimental Botany, 27, 147–156.

    CAS  Google Scholar 

  • Medina, E., Cuevas, E., Popp, M. & Lugo, A. E. (1990) Soil salinity, sun exposure, and growth of Acrostichum aureum, the mangrove fern. Botanical Gazette, 151, 41–49.

    Google Scholar 

  • Meinzer, F., Rundel, P. W., Sharafi, R. & Richter, H. (1986) Turgor and osmotic relations of the desert shrub Larrea tridentata. Plant, Cell and Environment, 3, 131–140.

    Google Scholar 

  • Mendelssohn, I. A., McKee, K. L. & Patrick, W. H. (1981) Oxygen deficiency in Spartina alterniflora roots: Metabolic adaptation to anoxia. Science, 214, 439–441.

    PubMed  CAS  Google Scholar 

  • Miller, P. C. (1972) Bioclimate, leaf temperature and primary production in red mangrove canopies in South Florida. Ecology, 53, 22–45.

    Google Scholar 

  • Moon, G. J., Clough, B. F., Peterson, C. A. & Allaway, W. G. (1986) Apolastic and symplastic pathways in Avicennia marina (Forsk.) Vierh. roots revealed by fluorescent tracer dyes. Australian Journal of Plant Physiology, 13, 637–648.

    CAS  Google Scholar 

  • Moore, R. T., Miller, P. C., Albright, D. & Tieszen, L. L. (1972) Comparative gas exchange characteristics of three mangrove species in winter. Photosynthetica, 6, 387–193.

    Google Scholar 

  • Moore, R. T., Miller, P. C., Ehleringer, J. & Lawrence, W. (1973) Seasonal trends in gas exchange characteristics of three mangrove species. Photosynthetica, 7, 387–394.

    Google Scholar 

  • Munns, R. (1985) Na+, K+ and CI” in xylem sap flowing to shoots of NaCI-treated barley. Journal of Experimental Botany, 36, 1032–1042.

    CAS  Google Scholar 

  • Munns, R. (1993) Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant, Cell and Environment, 16, 15–24.

    CAS  Google Scholar 

  • Munns, R. & Termaat, A. (1986) Whole plant responses to salinity. Australian Journal of Plant Physiology, 13, 143–160.

    Google Scholar 

  • Naidoo, G. (1983) Effects of flooding on leaf water potential and stomatal resistance in Bruguiera gymnorrhiza (L.) LAM. New Phytologist, 93, 369–376.

    Google Scholar 

  • Naidoo, G. (1985) Effects of waterlogging and salinity on plant water relations and on the accumulation of solutes in three mangrove species. Aquatic Botany, 22, 133–143.

    Google Scholar 

  • Naidoo, G. (1989) Seasonal plant water relations in a South African mangrove swamp. Aquatic Botany, 33, 87–100.

    Google Scholar 

  • Nickerson, N. H. & Thibodeau, F. R. (1985) Association between pore water sulfide concentrations and the distribution of mangroves. Biogeochemistry, 1, 183–192.

    Google Scholar 

  • Osmond, C. B. (1981) Photorespiration and photoinhibition: Some implications for the energetics of photosynthesis. Biochimica Biophysica Acta, 639, 77–89.

    CAS  Google Scholar 

  • Osmond, C. B. (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants. Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field (eds. N. R. Baker & J. R. Bowyer) Bios Scientific Publishers, Oxford, pp 1–24.

    Google Scholar 

  • Passioura, J. B., Ball, M. C. & Knight, J. H. (1992) Mangroves may salinise the soil and in so doing, limit their transpiration rate. Functional Ecology, 6, 476–481.

    Google Scholar 

  • Pezeshki, S. R., DeLaune, R. D. & Patrick, Jr. W. H., (1990) Differential response of selected mangroves to soil flooding and salinity: Gas exchange and biomass partitioning. Canadian Journal of Forestry, 20, 869–874.

    Google Scholar 

  • Popp, M. (1984a) Chemical composition of Australian mangroves. I. Inorganic ions and organic acids. Zietschrift Pflanzenphysiology, 113, 395–409.

    CAS  Google Scholar 

  • Popp, M. (1984b) Chemical composition of Australian mangroves. II. Low molecular weight carbohydrates. Zietschrift Pflanzenphysiology, 113, 411–421.

    CAS  Google Scholar 

  • Popp, M., Larher, F. & Weigel, P. (1984) Chemical composition of Australian mangroves. III. Free amino acids, total methylated onium compounds and total nitrogen. Zietschrift Pflanzenphysiology, 114, 15–25.

    CAS  Google Scholar 

  • Popp, M., Polania, J. & Weiper, M. (1993) Physiological adaptations to different salinity levels in mangrove. Towards the Rational Use of High Salinity Tolerant Plants, Vol 1. (eds. H. Lieth & A. Al Masoom) Kluwer Academic Publishers, Amsterdam, pp 217–224.

    Google Scholar 

  • Rabinowitz, D. (1978) Early growth of mangrove seedlings in Panama, and an hypothesis concerning the relationship of dispersal and zonation. Journal of Biogeography, 5, 113–133.

    Google Scholar 

  • Rada, F., Goldstein, G., Orozco, A., Montilla, M., Zabala, O. & Azocar, A. (1989) Osmotic and turgor relations of three mangrove ecosystem species. Australian Journal of Plant Physiology, 16, 477–486.

    Google Scholar 

  • Robertson, A. I. & Daniel, P. A. (1989) The influence of crabs on litter processing in high intertidal mangrove forests in tropical Australia. Oecologia, 78, 191–198.

    Google Scholar 

  • Saenger, P. & Moverley, J. (1985) Vegetative phenology of mangroves along the Queensland coastline. Proceedings of the Ecological Society of Australia, 13, 257–265.

    Google Scholar 

  • Saenger, P., Specht, M. M., Specht, R. L. & Chapman, V. J. (1977) Mangal and coastal salt-marsh communities in Australasia. Wet Coastal Ecosystems (ed. V. J. Chapman) Elsevier, Amsterdam, pp 293–345.

    Google Scholar 

  • Scholander, P. F. (1968) How mangroves desalinate seawater. Physiologia Plantarum, 21, 251–261.

    CAS  Google Scholar 

  • Scholander, P. F., Bradstreet, E. D., Hammel, H. T. & Hemmingsen, E. A. (1966) Sap concentrations in halophytes and some other plants. Plant Physiology, 41, 529–532.

    PubMed  CAS  Google Scholar 

  • Scholander, P. F., Hammel, H. T., Hemmingse, E. A. & Bradstreet, E. D. (1964) Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proceedings of the National Academy of Science USA, 52, 119–125.

    CAS  Google Scholar 

  • Scholander, P. F., Hammel, H. T., Hemmingsen, E. A. & Garey, W. (1962) Salt balance in mangroves. Plant Physiology, 37, 722–729.

    PubMed  CAS  Google Scholar 

  • Scholander, P. F., van Dam, L. & Scholander, S. I. (1955) Gas exchange in the roots of mangroves. American Journal of Botany, 42, 92–98.

    CAS  Google Scholar 

  • Semeniuk, V. (1983) Mangrove distribution in northwestern Australia in relationship to regional and local freshwater seepage. Vegetatio, 53, 11–31.

    Google Scholar 

  • Smith, J. A. C., Popp, M., Luttge, U., Cram, W. J., Diaz, M., Griffiths, H., Lee, H. S. J., Medina, E., Schafer, C., Stimmel, K-H. & Thonke, B. (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. VI. Water relations and gas exchange of mangroves. New Phytologist, 111, 293–307.

    Google Scholar 

  • Smith, T. J., III (1987) Seed predation in relation to tree dominance and distribution in mangrove forests. Ecology, 68, 266–273.

    Google Scholar 

  • Smith, T. J., III (1988) Differential distribution between subspecies of the mangrove Ceriops tagal: Competitive interactions along a salinity gradient. Aquatic Botany, 32, 79–89.

    Google Scholar 

  • Smith, T. J., III (1992) Forest structure. Tropical Mangrove Ecosystems (eds. A. I. Robertson & D. M. Alongi) Coastal and Estuarine Studies # 41, American Geophysical Union, Washington, D. C., pp 101–136.

    Google Scholar 

  • Smith, T. J., III, Boto, K. G., Frusher, S. D. & Giddins, R. L. (1991) Keystone species and mangrove forest dynamics: The influence of burrowing by crabs on soil nutrient status and forest productivity. Estuarine, Coastal and Shelf Science, 33, 419–432.

    CAS  Google Scholar 

  • Sommer, C., Thonke, B. & Popp, M. (1990) The compatibility of D-pinitol and 1D-1-O-methylmucoinositol with malate dehydrogenase activity. Botanica Acta, 103, 270–273.

    CAS  Google Scholar 

  • Soto, R. (1988) Geometry, biomass allocation, and leaf life-span of Avicennia germinans (L.) (Avicenniaceae) along a salinity gradient in Salinas, Puntarenas, Costa Rica. Revista de Biologia Tropical, 36, 309–323.

    Google Scholar 

  • Sperry, J. S. (1986) Relationship of xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa. Plant Physiology, 80, 110–116.

    CAS  Google Scholar 

  • Sperry, J. S. & Tyree, M. T. (1988) Mechanism of water stress-induced xylem embolism. Plant Physiology, 88, 581–604.

    PubMed  CAS  Google Scholar 

  • Sperry, J. S., Tyree, M. T. & Donnelly, J. R. (1988) Vulnerability of xylem to embolism in a mangrove vs an inland species of Rhizophoraceae. Physiologia Plantarum, 74, 276–283.

    Google Scholar 

  • Sternberg, L. da S. L., Ish-Shalom, N., Ross, M. & ÒBrein, J. (1991) Water relations of coastal plant communities near the ocean/freshwater boundary. Oecologia, 88, 305–310.

    Google Scholar 

  • Termaat, A., Passioura, J. B. & Munns, R. E. (1985) Shoot turgor does not limit shoot growth of NaCl-affected wheat and barley. Plant Physiology, 77, 869–872.

    PubMed  CAS  Google Scholar 

  • Thibodeau, F. R. & Nickerson, N. H. (1986) Differential oxidation of mangrove substrate by Avicennia germinans and Rhizophora mangle. American Journal of Botany, 73, 512–516.

    Google Scholar 

  • Thom, B. G. (1967). Mangrove ecology and deltaic geomorphology, Tabasco, Mexico. Journal of Ecology, 55, 301–343.

    Google Scholar 

  • Tomlinson, P. B. (1986) The Botany of Mangroves. Cambridge University Press, Cambridge, pp 62–115.

    Google Scholar 

  • Tyree, M. T. & Dixon, M. A. (1986) Water stress-induced cavitation and embolism in some woody plants. Physiologia Plantarum, 66, 397–405.

    Google Scholar 

  • Tyree, M. T. & Sperry, J. S. (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiology, 88, 574–580.

    PubMed  CAS  Google Scholar 

  • Tyree, M. T., Fiscus, E. L., Wullschleger, S. D. & Dixon, M. A. (1986) Detection of xylem cavitation in corn under field conditions. Plant Physiology, 82, 597–599.

    PubMed  CAS  Google Scholar 

  • Valiela, I. (1984) Marine Ecological Processes. Springer-Verlag, New York.

    Google Scholar 

  • van der Moezel, P. G., Watson, L. E., Pearce-Pinto, G. V. N. & Bell, D. T. (1988) The response of six Eucalyptus species and Casuarina obesa to the combined effect of salinity and waterlogging. Australian Journal of Plant Physiology, 15, 465–474.

    Google Scholar 

  • Vitousek, P. M. (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65, 285–298.

    CAS  Google Scholar 

  • Watson, J. G. (1928) Mangrove forests of the Malay Peninsula. Malayan Forest Records, 6, 1–275.

    Google Scholar 

  • Werner, A. & Stelzer, R. (1990) Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl. Plant, Cell and Environment, 13, 243–255.

    CAS  Google Scholar 

  • Whitmore, T. C. (1992) An Introduction to Tropical Rainforests. Clarendon Press, Oxford.

    Google Scholar 

  • Wolanski, E. & Ridd, P. (1986) Tidal mixing and trapping in mangrove swamps. Estuarine, Coastal and Shelf Science, 25, 43–51.

    Google Scholar 

  • Zuberer, D. A. & Silver, W. S. (1978) Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Applied Environmental Microbiology, 35, 567–575.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Ball, M.C. (1996). Comparative Ecophysiology of Mangrove Forest and Tropical Lowland Moist Rainforest. In: Mulkey, S.S., Chazdon, R.L., Smith, A.P. (eds) Tropical Forest Plant Ecophysiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1163-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1163-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8493-2

  • Online ISBN: 978-1-4613-1163-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics