Skip to main content

Structural and Electronic Instabilities of Transition Metal Chalcogenides

  • Chapter
Physics and Chemistry of Low-Dimensional Inorganic Conductors

Part of the book series: NATO ASI Series ((NSSB,volume 354))

Abstract

The electronic instabilities of low-dimensional metals leading to their structural modulations are often discussed in terms of Fermi surface nesting [1]. One-dimensional (1D) metals are susceptible to a charge density wave (CDW) formation due to the electronic instability associated with their nested Fermi surfaces. A CDW phenomenon also occurs in certain two-dimensional metals [2], although individual Fermi surfaces exhibit no nesting. This finding led to the concept of hidden Fermi surface nesting [3]: the combined Fermi surfaces of such a system are decomposed into a set of hidden 1D Fermi surfaces, and the nesting associated with the hidden surfaces is responsible for the CDW instability. The CDW instability driven by Fermi surface nesting (regular or hidden) refers to the tendency that a low-dimensional metal lowers its electronic energy by opening a band gap at the Fermi level. This is analogous in nature to the first-order Jahn-Teller instability in molecular chemistry [4]: a molecule with partially filled degenerate HOMO’s tends to undergo a symmetry-lowering distortion which splits the levels into the filled and empty ones with an energy gap between the two. A molecule with no partially filled degenerate HOMO’s can also undergo a symmetry-lowering distortion, as exemplified by the second-order Jahn-Teller instability [4]. Likewise, the structural modulation of a low-dimensional metal can originate from the lowering of the energy levels lying well below the Fermi level. Such a structural modulation is not explained in terms of the concept of Fermi nesting. In this work, the origin of the structural modulations in several transition metal chalcogenide metals is classified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson J. A., DiSalvo F. J. and Mahajan S., Adv. Phys., 24, 117 (1975).

    Article  CAS  Google Scholar 

  2. Williams P. M. in Crystallography and Crystal Chemistry of Materials with Layered Structures, Lévy F., Ed., Reidel, Dordrecht, The Netherlands, 1976, vol.2, p 51.

    Chapter  Google Scholar 

  3. Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, Schlenker C., Ed., Kluwer Academic Publ., Dordrecht, The Netherlands, 1989.

    Google Scholar 

  4. Whangbo M.-H., Canadell E., Foury P. and Pouget J. P., Science, 252, 96 (1991).

    Article  CAS  Google Scholar 

  5. Canadell E. and Whangbo M.-H., Chem. Rev., 91, 965 (1991).

    Article  CAS  Google Scholar 

  6. Whangbo M.-H. and Canadell E., J. Am. Chem. Soc., 114, 9587 (1992).

    Article  CAS  Google Scholar 

  7. Salem L., The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York, 1966.

    Google Scholar 

  8. Albright T. A., Burdett J. K. and Whangbo M.-H., Orbital Interactions in Chemistry, Wiley, New York, 1985.

    Google Scholar 

  9. Hulliger F., Structural Chemistry of Layer-Type Phases, Léevy F., Ed., Reidel, Dordrecht, The Netherlands, 1976.

    Google Scholar 

  10. Wilson J. A., Phys. Stat. Sol. (b), 86, 11 (1978).

    Article  CAS  Google Scholar 

  11. Brouwer R. and Jelllinek F., Physica B, 99, 51 (1980).

    Article  CAS  Google Scholar 

  12. Canadell E., Jobic S., Bree R., Rouxel J. and Whangbo M.-H., J. Solid State Chem., 99, 189 (1992).

    Article  CAS  Google Scholar 

  13. Bronsema K. D., Bus J. W. and Wiegers G. A., J. Solid State Chem., 53, 415 (1984).

    Article  CAS  Google Scholar 

  14. Brown B. E., Acta Crstallogr., 20, 264 (1966).

    Article  CAS  Google Scholar 

  15. Brown B. E. Acta Crystallogr., 20, 268 (1966).

    Article  CAS  Google Scholar 

  16. Guthrie D. H. and Corbett J. D., J. Solid State Chem., 37, 256 (1981).

    Article  CAS  Google Scholar 

  17. Meerchaut A., Spiesser M., Rouxel J. and Gorochov O., J. Solid State Chem., 37, 31 (1980).

    Article  Google Scholar 

  18. Alcock N. W. and Kjekshus A., Acta Chem. Scand., 19, 79 (1965).

    Article  CAS  Google Scholar 

  19. Wildervanck J. C. and Jellinek F., J. Less-Common Met., 24, 73 (1971).

    Article  CAS  Google Scholar 

  20. Guillevic J., Le Marouille J.-Y. and Grandjean D., Acta Crystallogr. B, 30, 111(1974).

    Article  CAS  Google Scholar 

  21. Whangbo M.-H. and Hoffmann R., J. Am. Chem. Soc., 100, 6093 (1978).

    Article  CAS  Google Scholar 

  22. Canadell E., LeBeuze A., Khalifa A. E., Chevrel R. and Whangbo M.-H., J. Am. Chem. Soc., 111, 3778 (1989).

    Article  CAS  Google Scholar 

  23. Burdett J. K. and Hughbanks T., Inorg. Chem., 24, 1741 (1985).

    Article  CAS  Google Scholar 

  24. Woolley A. M. and Wexler G., J. Phys. C: Solid State Phys., 10, 2601 (1977).

    Article  CAS  Google Scholar 

  25. Smith N. V., Kevan S. D. and DiSalvo F. J., J. Phys. C: Solid State Phys., 18, 3175 (1985).

    Article  CAS  Google Scholar 

  26. Doni E. and Girlanda R. in Electronic Structure and Electronic Transitions in Layered Materials, Grasso V., Ed., Reidel, Dordrecht, The Netherlands, 1986, p 1.

    Google Scholar 

  27. Hoffmann R., J. Chem. Phys., 39, 1397 (1963).

    Article  CAS  Google Scholar 

  28. Moncton D. E., Axe J. D. and DiSalvo F. J., Phys. Rev. B., 16, 801 (1977).

    Article  CAS  Google Scholar 

  29. Bronsema K. D., van Smaalen S., de Boer, J. L. Wiegers, G. A. and Jellinek F., Acta Cryst. B, 43, 305 (1987).

    Article  Google Scholar 

  30. Whangbo M.-H. and Gressier P., Inorg. Chem., 23, 1228 (1984).

    Article  CAS  Google Scholar 

  31. Seo D.-K., Whangbo M.-H. and Canadell E., in preparation.

    Google Scholar 

  32. Sambongi T., Tadaki S., Hino N. and Nomura K., Synth. Met., 58, 109 (1993).

    Article  CAS  Google Scholar 

  33. DiSalvo F. J., Moncton D. E. and Waszczak J. V., Phys. Rev. B, 14, 4321 (1976).

    Article  CAS  Google Scholar 

  34. de Boer D. K. G., van Bruggen C. F., Bus G. W., Coehoorn R., Haas C., Sawatzky G. A., Myron H. W., Norman D. and Padmore H., Phys. Rev. B, 29, 6797 (1984).

    Article  Google Scholar 

  35. Le Nagard N., Katty A., Collin G., Gorochov O. and Willig A., J. Solid State Chem., 27, 267 (1979).

    Google Scholar 

  36. Fleming R. M., DiSalvo F. J., Cava R. J. and Waszczak J. V., Phys. Rev. B, 24, 2850 (1981).

    Article  CAS  Google Scholar 

  37. Mahy J., Colaitis D., van Dyck D. and Amelinckx S., J. Solid State Chem., 68, 320 (1987).

    Article  CAS  Google Scholar 

  38. Seo D.-K., Whangbo, M.-H. and Canadell E., in preparation.

    Google Scholar 

  39. Liang W. and Whangbo M.-H., Solid State Commun., 85, 405 (1993).

    Article  CAS  Google Scholar 

  40. Fjellvag H., Gronvold F., Stolen S., Andersen A. F., Müller-Käfer R. and Simon A., Z. Kristallogr., 184, 111 (1988).

    Article  Google Scholar 

  41. Nozaki H., Shibata K. and Ohhashi N., J. Solid State Chem., 91, 306 (1991).

    Article  CAS  Google Scholar 

  42. Mehrotra P. and Hoffmann R., Inorg. Chem., 17, 2187 (1978).

    Article  CAS  Google Scholar 

  43. Folmer J. C. W and Jellinek F., J. Less-Common Met., 76, 153 (1980).

    Article  CAS  Google Scholar 

  44. Whangbo M.-H. and Canadell E., Solid State Commun., 81, 895 (1992).

    Article  CAS  Google Scholar 

  45. Burschka C., Z. Naturforsch. B, 34, 675 (1979).

    Google Scholar 

  46. ter Haar L. W., DiSalvo F. J., Bair H. E., Fleming R. M., Waszczak J. V. and Hatfield W. E., Phys. Rev. B, 35, 1932 (1987).

    Article  Google Scholar 

  47. Fleming R. M., ter Haar L. W. and DiSalvo F. J., Phys. Rev. B, 35, 5388 (1987).

    Article  CAS  Google Scholar 

  48. For a similar discussion on NbSe3, see: Wilson J. A., Phys. Rev. B, 19, 6456 (1979).

    Article  CAS  Google Scholar 

  49. Schils H. and Bronger W., Z. Anorg. Allg. Chem., 456, 187 (1979).

    Article  CAS  Google Scholar 

  50. Whangbo M.-H. and Canadell E., Inorg. Chem., 29, 1395 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Whangbo, MH., Seo, DK., Canadell, E. (1996). Structural and Electronic Instabilities of Transition Metal Chalcogenides. In: Schlenker, C., Dumas, J., Greenblatt, M., van Smaalen, S. (eds) Physics and Chemistry of Low-Dimensional Inorganic Conductors. NATO ASI Series, vol 354. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1149-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1149-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8449-9

  • Online ISBN: 978-1-4613-1149-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics