Skip to main content

Scanning Tunneling Microscopy and Atomic Force Microscopy on Charge Density Wave and Related Materials

  • Chapter
Physics and Chemistry of Low-Dimensional Inorganic Conductors

Part of the book series: NATO ASI Series ((NSSB,volume 354))

  • 617 Accesses

Abstract

Since the first real-space observation of charge density waves (CDW) on cleaved surfaces of 1T-TaS2 by means of a low-temperature scanning tunneling microscope (STM) by Coleman et al. [1], many different CDW materials have been studied by STM and related scanning probe methods [2–5]. STM is particularly well suited for the investigation of the local structure of CDW systems because CDW formation is connected with a modification of the conduction electron wave-functions and the local density of states at the Fermi to level which the STM is directly sensitive to. The relative CDW amplitudes as measured by STM therefore reflect the amount of charge transfer into the CDW condensate. However, the absolute STM corrugation amplitudes are usually enhanced by several different mechanisms compared with results obtained by other experimental methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.V Coleman, B. Drake, RK. Hansma, and G. Slough, Phys. Rev. Lett. 55, 394 (1985).

    Article  CAS  Google Scholar 

  2. R.V. Coleman, B. Giambattista, P.K. Hansma, A. Johnson, W.W. McNairy, and C.G. Slough, Adv. Phys. 57, 559(1988)

    Google Scholar 

  3. R. Wiesendanger and D. Anselmetti, in: Surface Properties of Layered Structures, ed. G. Benedek, Kluwer 1992, p. 1.

    Chapter  Google Scholar 

  4. R. Wiesendanger and D. Anselmetti, in: Scanning Tunneling Microscopy I, eds. H.-J. Güntherodt and R. Wiesendanger, Springer 1992, p. 131.

    Google Scholar 

  5. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications, Cambridge University Press, 1994.

    Book  Google Scholar 

  6. J. Tersoff, Phys. Rev. Lett. 57, 440 (1986).

    Article  CAS  Google Scholar 

  7. J. M. Soler, A. M. Baró, N. Garcia, and H. Rohrer, Phys. Rev. Lett. 57, 444 (1986).

    Article  CAS  Google Scholar 

  8. R. V. Coleman, W. W. McNairy, C. G. Slough, P. K. Hansma, and B. Drake, Surf. Sci. 181, 112 (1987).

    Article  CAS  Google Scholar 

  9. E. Meyer, D. Anselmetti, R. Wiesendanger, H.-J. Güntherodt, F. Lévy, and H. Berger, Europhys. Lett. 9, 695 (1989).

    Article  CAS  Google Scholar 

  10. E. Meyer, R. Wiesendanger, D. Anselmetti, H. R. Hidber, H.-J. Güntherodt, F. Levy, and H. Berger, J. Vac. Sci. Technol. A8, 495 (1990).

    Google Scholar 

  11. W L. McMillan, Phys. Rev. B16, 643 (1977).

    Google Scholar 

  12. C. G. Slough, B. Giambattista, A. Johnson, W. W. McNairy, C. Wang, and R. V Coleman, Phys. Rev. B37, 6571 (1988).

    Google Scholar 

  13. C. G. Slough, W. W. McNairy, R. V Coleman, B. Drake, and P. K. Hansma, Phys. Rev. B34, 994 (1986).

    Google Scholar 

  14. B. Giambattista, A. Johnson, R. V Coleman, B. Drake, and P. K. Hansma, Phys. Rev. B37, 2741 (1988).

    Google Scholar 

  15. B. Giambattista, A. Johnson, W. W McNairy, C. G. Slough, and R. V Coleman, Phys. Rev. B38, 3545 (1988).

    Google Scholar 

  16. B. Giambattista, C. G. Slough, W. W. McNairy, and R. V. Coleman, Phys. Rev. B41, 10082 (1990).

    Google Scholar 

  17. X. L. Wu, P. Zhou, and C. M. Lieber, Phys. Rev. Lett. 61, 2604 (1988).

    Article  CAS  Google Scholar 

  18. X. L. Wu, P. Zhou, and C. M. Lieber, Nature 335, 55 (1988).

    Article  CAS  Google Scholar 

  19. X. L. Wu and C. M. Lieber, J. Am. Chem. Soc. 111, 2731 (1989).

    Article  CAS  Google Scholar 

  20. X. L. Wu and C. M. Lieber, Phys. Rev. B41, 1239 (1990).

    Google Scholar 

  21. H. Dai, H. Chen, and C. M. Lieber, Phys. Rev Lett. 66, 3183 (1991).

    Article  CAS  Google Scholar 

  22. X. L. Wu and C. M. Lieber, J. Am. Chem. Soc. 110, 5200 (1988).

    Article  CAS  Google Scholar 

  23. R. C. Barrett, J. Nogami, and C. F. Quate, Appl. Phys. Lett. 57, 992 (1990).

    Article  CAS  Google Scholar 

  24. K. Nakanishi and H. Shiba, J. Phys. Soc. Jpn. 43, 1839 (1977).

    Article  CAS  Google Scholar 

  25. X. L. Wu and C. M. Lieber, Science 243, 1703 (1989).

    Article  CAS  Google Scholar 

  26. X. L. Wu and C. M. Lieber, Phys. Rev. Lett. 64, 1150 (1990).

    Article  CAS  Google Scholar 

  27. X. L. Wu and C. M. Lieber, J. Vac. Sci. Technol. B9, 1044 (1991).

    Google Scholar 

  28. B. Burk, R. E. Thomson, A. Zettl, and J. Clarke, Phys. Rev. Lett. 66, 3040 (1991).

    Article  CAS  Google Scholar 

  29. R. V. Coleman, W. W. McNairy, and C. G: Slough, Phys. Rev. B45, 1428 (1992).

    Google Scholar 

  30. R. E. Thomson, U. Walter, E. Ganz, J. Clarke, A. Zettl, P. Rauch, and F. J. DiSalvo, Phys. Rev. B38, 10734 (1988).

    Google Scholar 

  31. R. E. Thomson, U. Walter, E. Ganz, P. Rauch, A. Zettl, and J. Clarke, J. Microsc. 152, 771 (1988).

    Article  CAS  Google Scholar 

  32. M. Tanaka, W. Mizutani, T Nakashizu, S. Yamazaki, H. Tokumoto, H. Bando, M. Ono, and K. Kajimura, Jpn. J. Appl. Phys. 28, 473 (1989).

    Article  CAS  Google Scholar 

  33. C. Wang, B. Giambattista, C. G. Slough, R. V. Coleman, and M. A. Subramanian, Phys. Rev. B42, 8890 (1990).

    Google Scholar 

  34. C. Wang, C. G. Slough, and R. V. Coleman, J. Vac. Sci. Technol. B9, 1048 (1991).

    Google Scholar 

  35. T. Hasegawa, W Yamaguchi, J.-J. Kim, W. Wei, M. Nantoh, H. Ikuta, K. Kitazawa, A. Mannivannan, A. Fujishima, and K. Uchinokura, Surf. Sci. 314, 269 (1994).

    Article  CAS  Google Scholar 

  36. J. W Lyding, J. S. Hubacek, G. Gammie, S. Skala, R. Brockenbrough, J. R. Shapley, and M. P. Keyes, J. Vac. Sci. Technol. A6, 363 (1988).

    Google Scholar 

  37. G. Gammie, J. S. Hubacek, S. L. Skala, R. T. Brockenbrough, J. R. Tucker, and J. W. Lyding, Phys. Rev. B40, 9529(1989).

    Google Scholar 

  38. G. Gammie, J. S. Hubacek, S. L. Skala, R. T. Brockenbrough, J. R. Tucker, and J. W. Lyding, Phys. Rev. 540,11965(1989).

    Google Scholar 

  39. G. Gammie, J. S. Hubacek, S. L. Skala, J. R. Tucker, and J. W Lyding, J. Vac. Sci. Technol. B9, 1027 (1991).

    Google Scholar 

  40. C. G. Slough and R. V. Coleman, Phys. Rev. B40, 8042 (1989).

    Google Scholar 

  41. C. G. Slough, B. Giambattista, A. Johnson, W. W. McNairy,and R. V. Coleman, Phys. Rev. B39, 5496 (1989).

    Google Scholar 

  42. C. G. Slough, B. Giambattista, W. W. McNairy, and R. V. Coleman, J. Vac. Sci. Technol. A8, 490 (1990).

    Google Scholar 

  43. J. Heil, J. Wesner, B. Lommel, W. Assmus, and W. Grill, J. Appl. Phys. 65, 5220 (1989).

    Article  CAS  Google Scholar 

  44. A. Zettl, L. C. Bourne, J. Clarke, M. F. Crommie, M. F. Hundley, R. E. Thomson, and U. Walter, Synth. Met. 29, F445 (1989).

    Article  Google Scholar 

  45. D. Anselmetti, R. Wiesendanger, H.-J. Güntherodt, and G. Grüner, Europhys. Lett. 12, 241 (1990).

    Article  CAS  Google Scholar 

  46. E. Garrunkel, G. Rudd, D. Novak, S. Wang, G. Ebert, M. Greenblatt, T. Gustafsson, and S. H. Garofalini, Science 246, 99 (1989).

    Article  Google Scholar 

  47. K. Nomura and K. Ichimura, J. Vac. Sci. Technol. A8, 504 (1990).

    Google Scholar 

  48. S. Pan, A. L. de Lozanne, and R. Fainchtein, J. Vac. Sci. Technol. B9, 1017 (1991).

    Google Scholar 

  49. K. Nomura and K. Ichimura, Solid State Commun. 71, 149 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Wiesendanger, R. (1996). Scanning Tunneling Microscopy and Atomic Force Microscopy on Charge Density Wave and Related Materials. In: Schlenker, C., Dumas, J., Greenblatt, M., van Smaalen, S. (eds) Physics and Chemistry of Low-Dimensional Inorganic Conductors. NATO ASI Series, vol 354. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1149-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1149-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8449-9

  • Online ISBN: 978-1-4613-1149-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics