Skip to main content

Hyperharmonic Cones

  • Chapter
Potential Theory

Abstract

The theory of H-cones ([3]) covers the superharmonic case in potential theory. This work continues the algebraic axiomatization of the hyperharmonic case. Our basic structure is a hyperharmonic structure defined by M. Arsove and H. Leutwiler in [1]. The cancellation law does not hold in hyperharmonic structures. In order to characterize cancellable elements we assume that a hyperharmonic structure is a convex cone and the greatest lower bound of (u/n) nεℕ exists for all u.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arsove M.G. and H. Leutwiler: Algebraic potential theory. Mem. Amer. Math. Soc. 226 (1980).

    Google Scholar 

  2. Arsove M.G. and H. Leutwiler: Quasi-units in mixed lattices structures. Lecture Notes in Math. 789, Springer-Verlag, Berlin-Heidelberg-New York (1979), 35–54.

    Google Scholar 

  3. Boboc N., Gh. Bucur and A. Cornea: Order and convexity in potential theory: H-cones. Lecture Notes in Math. 853, Springer-Verlag, Berlin-Heidelberg-New York (1981).

    Google Scholar 

  4. Boboc, N. and A. Cornea: H-cônes et biadjoints des H-cônes. C. R. Acad. Sci. Paris 270 (1970) 1679–1682.

    MathSciNet  MATH  Google Scholar 

  5. Cornea, A. and S.-L. Eriksson: Order continuity of the greatest lower bound of two functionals. Analysis 7 (1987) 173–184.

    MathSciNet  MATH  Google Scholar 

  6. Cornea, A. and G. Licea: Order and potential resolvent families of kernels. Lecture Notes in Math. 494, Springer-Verlag, Berlin-Heidelberg-New York (1975).

    Google Scholar 

  7. Eriksson, S.-L.: Hyperharmonic cones and hyperharmonic morphims. Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 49 (1984).

    Google Scholar 

  8. Eriksson, S.-L.: Hyperharmonic cones and cones of hyperharmonics. An. Stiint. Univ. “AI.I.Cuza” Iasi Sect Ia Mat. (1985), 109–116.

    Google Scholar 

  9. Eriksson, S.-L.: Representations of hyperharmonic cones. To appear in Trans. Amer. Math. Soc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Eriksson-Bique, SL. (1988). Hyperharmonic Cones. In: Král, J., Lukeš, J., Netuka, I., Veselý, J. (eds) Potential Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0981-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0981-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8276-1

  • Online ISBN: 978-1-4613-0981-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics