Skip to main content

Part of the book series: Rochester Series on Environmental Toxicity ((RSET))

Abstract

Arsenic is classified as a metalloid and exhibits both metallic and nonmetallic properties and thus a wide range of chemical reactivity. It may appear with a valency of −3, 0, +3 or +5. Arsenic is present in rocks, ores, e.g. in the sulfides realgar (AS4S4) and orpiment (As2S3), and as arsenides and sulfarsenides of heavy metals. Arsenopyrite (FeSAs, mispickel) is the most common arsenic-containing mineral. Arsenic is rarely found in elemental form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apel, P. and Stoeppler, M., 1983, Speciation of arsenic in urine of occupationally nonexposed persons, in: “4th Int. Conf. Heavy Metals in Environment”, pp. 517–520, CEP Consultants Ltd., Heidelberg, Federal Republic of Germany.

    Google Scholar 

  • Aposhian, H.V., Carter, D.E., Hoover, T.D., Hsu, C., Maiorino, R. and Stine, E., 1984, DMSA, DMPS, and DMPA - as arsenic antidotes, Fund. Appl. Toxicol., 4: 58–70.

    Google Scholar 

  • Ariyoshi, T. and Ikeda, T., 1974, On the tissue distribution and the excretion of arsenic in rats and rabbits of administration with arsenical compounds, J. Hyg. Chem., 20: 20-295.

    Google Scholar 

  • Astolfi, E., Maccagno, A., Garcia Fernandez, J.C., Vaccaro, R. and Stimola, R., 1981, Relation between arsenic in drinking water and skin cancer, Biol. Trace Elem. Res., 3: 133–143.

    Google Scholar 

  • Bencko, V. and Symon, K., 1977, Health aspects of burning coal with a high arsenic content, Environ. Res., 13: 378–385.

    Google Scholar 

  • Bettley, F.R. and O’Shea, J.A., 1975, The absorption of arsenic and its relation to carcinoma, Br. J. Dermatol., 92: 563–568.

    Google Scholar 

  • Blom, S., Lagerkvist, B. and Linderholm, H., 1985, Arsenic exposure to smelter workers: Clinical and neurophysiological studies, Scand. J. Work Environ. Health, 11: 265–270.

    Google Scholar 

  • Borgono, J.M., Vincent, P., Venturino, H. and Infante, A., 1977, Arsenic in the drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of the treatment plant, Environ. Health Perspect., 19: 103-105.

    Google Scholar 

  • Braman, R.S., 1983, Environmental reaction and analysis methods, in: “Biological and Environmental Effects of Arsenic,” Fowler, ed, pp. 141–154, Elsevier Science Publishers B. V.

    Google Scholar 

  • Braman, R.S., Johnson, D.L., Foreback, C.C., Ammons, J.M. and Bricker, J.L., 1977, Separation and determination of nanogram amounts of inorganic arsenic and methyl arsenic compounds, Anal. Chem., 49: 621.

    Google Scholar 

  • Brooke, P.J. and Evans, W.H., 1981, Determination of total inorganic arsenic in fish, shellfish and fish products, Analyst, 106: 514–520.

    Article  PubMed  CAS  Google Scholar 

  • Buchet, J.P. and Lauwerys, R., 1985, Study of inorganic arsenic methylation by rat liver in vitro: Relevance for the interpretation of observations in man, Arch. Toxicol., 57: 125–129.

    Google Scholar 

  • Buchet, J.P., Lauwerys, R. and Roels, H., 1980a, Comparison of several methods for the determination of arsenic compounds in water and in urine, Int. Arch. Occup. Environ. Health, 46: 11–29.

    Google Scholar 

  • Buchet, J.P., Roels, H., Lauwerys, R., Bruaux, P., Clays-Thoreau, F., Lafontaine, A. and Yerduyn, G., 1980b, Repeated surveillance of exposure to cadmium, manganese, and arsenic in school-age children living in rural, urban and nonferrous smelter areas in Belgium, Environ. Res., 22: 95–108.

    Google Scholar 

  • Buchet, J.P., Lauwerys, R. and Roels, H., 1981a, Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers, Int. Arch. Occup. Environ. Health, 48: 111–118.

    Google Scholar 

  • Buchet, J.P., Lauwerys, R. and Roels, H., 1981b, Comparison of the urinary excretion of arsenic metabolites after a single dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. Int. Arch. Occup. Environ. Health, 48: 71–79.

    Google Scholar 

  • Calesnick, B., Wase, A. and Overby, L.R., 1966, Availability during human consumption of the arsenic in tissues of chicks fed arsanilic-74As acid, Toxicol. Appl. Pharmacol., 9: 27–30.

    Google Scholar 

  • Calvert, C.C., 1975, Arsenicals in animal feeds and wastes, in: “Arsenical Pesticides,” ACS Symp. Ser. No. 7, American Chemical Society, Washington D.C.

    Google Scholar 

  • Cant, S.M. and Legendre, L.A., 1982, Assessment of occupational exposure to arsenic, copper, and lead in a western copper smelter, Am. Ind. Hyg. Assoc. J., 43: 223–226.

    Google Scholar 

  • Cebrian, M.E., Albores, A., Aguilar, M. and Blakely, E., 1983, Chronic arsenic poisoning in the north of Mexico, Human Toxicol., 2: 121–133.

    Article  CAS  Google Scholar 

  • Chapman, A.C., 1926, On the presence of compounds of arsenic in marine crustaceans and shell fish, Analyst, 51: 548–563.

    Article  CAS  Google Scholar 

  • Chen, C.-J., Chuang, Y.-C., Lin, T.-M. and Wu, H.-Y., 1985, Malignant neoplasms among residues of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers, Cancer Res., 45: 5895–5899.

    PubMed  CAS  Google Scholar 

  • Chen, D.-J., Chuang, Y.-C., You, S.-L., Lin, T.-M. and Wu, H.-Y., 1986, A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic in Taiwan, Br. J. Cancer, 53: 399–405.

    Google Scholar 

  • Cornellis, R., 1973, Neutron activation analysis of hair, failure of a mission, J. Radioanal. Chem., 15: 305–316.

    Google Scholar 

  • Curry, A.S. and Pounds, C.A., 1977, Arsenic in hair, J. Forensic Sci. Soc., 17: 37–44.

    Google Scholar 

  • Du Pont, O., Ariel, I. and Warren, S.L., 1941, The distribution of radioactive arsenic in the normal and tumor-bearing ( Brown-Pearce) rabbit, Am. J. Syph. Gonorrhea Vener. Pis., 26: 96–118.

    Google Scholar 

  • Edmonds, J.S. and Francesconi, K.A., 1983, Arsenic-containing ribofuranosides: Isolation from brown kelp Ecklonia radiata and N.M.R. spectra, J. Chem. Soc. Perkin Trans., 1: 2375–2382.

    Google Scholar 

  • Edmonds, J.S., Francesconi, K.A., Cannon, J.R., Raston, C.L., Skelton, B.W. and White, A.H., 1977, Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster Panulirus Longipes Cygnus George, Tetrahedron Lett., 18: 1543–1546.

    Article  Google Scholar 

  • Feldman, R.G., Niles, C.A., Kelly-Heyes, M., Sax, D.S., Dixon, W.J., Thompson, D.J. and Landau, E., 1979, Peripheral neuropathy in arsenic smelter workers, Neurology, 29: 939–944.

    PubMed  CAS  Google Scholar 

  • Flanjak, J., 1982, Inorganic and organic arsenic in some commercial east Australian crustacea, J. Sci. Food Agric., 33: 579–583.

    Google Scholar 

  • Foa, V., Colombi, A., Maroni, M., Buratti, M. and Calzaferri, G., 1984, The speciation of the chemical forms of arsenic in the biological monitoring of exposure to inorganic arsenic, Sci. Total Environ., 34: 241–259.

    Google Scholar 

  • Fowler, B.A. and Weissberg, J.B., 1974, Arsine poisoning, New Engl. J. Med., 291: 1171–1174.

    Google Scholar 

  • Freeman, H.C., Uther, J.F., Fleming, R.B., Odense, P.H., Ackman, R.G., Landry, G. and Musial, C., 1979, Clearance of arsenic ingested by man from arsenic contaminated fish, Bull. Environ. Contam. Toxicol., 22: 224–229.

    Google Scholar 

  • Gordon, G.F., 1985, Sex and age related differences in trace element concentrations in hair, Sci. Tot. Environ., 42: 133–147.

    Google Scholar 

  • Harrington, M.J., Middaugh, P., Morse, D.L. and Houseworth, J., 1978, A survey of a population exposed to high concentrations of arsenic in well water in Fairbanks, Alaska, Am. J. Epidemiol., 108: 377–385.

    Google Scholar 

  • Heydorn, K., 1970, Environmental variation of arsenic levels in human blood determined by neutron activation analysis, Clin. Chim. Acta, 28: 349–357.

    Google Scholar 

  • Hopps, H.C., 1977, The biologic bases for using hair and nail for analyses of trace elements, Sci. Tot. Environ., 7: 71–89.

    Google Scholar 

  • IARC, 1980, Arsenic and arsenic compounds, in: “IARC Monographs on the Evaluation of the Carcinogenic Risk of Themicals to Humans. Some Metals and Metallic Compounds,” Volume 23, pp. 39–141, International Agency for Research on Cancer, Lyon.

    Google Scholar 

  • Inamasu, T., Hisanaga, A. and Ishinishi, N., 1982, Comparison of arsenic trioxide and calcium arsenate retention in the rat lung after intratracheal installation, Toxicol. Lett., 12: 1–5.

    Google Scholar 

  • Johnson, D.L. and Braman, R.S., 1975, Alkyl- and inorganic arsenic in air samples, Chemosphere, 6: 333–338.

    Article  Google Scholar 

  • Jongen, W.M.F., Cardinals, J.M. and Box, P.M.J., 1985, Genotoxicity testing of arsenobetaine, the predominant form of arsenic in marine fishery products, Fd. Chem. Toxic., 23: 669–673.

    Google Scholar 

  • Kaise, T., Watanabe, S. and Itoh, K., 1985, The acute toxicity of arsenobetaine, Chemosphere, 14: 1327–1332.

    Article  CAS  Google Scholar 

  • Kensler, C.J., Abels, J.C. and Rhoads, C.P., 1946, Arsine poisoning, mode of action and treatment, J. Pharmacol. Exp. Ther., 88: 99–108.

    Google Scholar 

  • Klumpp, D.W. and Peterson, P.J., 1981, Chemical characteristics of arsenic in a marine food chain, Mar. Biol., 62: 297–305.

    Google Scholar 

  • Lagerkvist, B., Linderholm, H. and Nordberg, G.F., 1986, Vasospastic tendency and Raynaud’s phenomenon in smelter workers exposed to arsenic, Environ. Res., 39: 465–474.

    Google Scholar 

  • Landrigan, P.J., Castello, R.J. and Stringer, W.T., 1982, Occupational exposure to arsine. An epidemiologic reappraisal of current standards, Scand. J. Work Environ. Health, 8: 169–177.

    Google Scholar 

  • Lauwerys, R.R., Buchet, J.P. and Roels, H., 1979, The determination of trace levels of arsenic in human biological materials, Arch. Toxicol., 41: 239–247.

    Google Scholar 

  • Lawrence, J.F., Michalik, P., Tam, G. and Conacher, H.B.S., 1986, Identification of arsenobetaine and arsenocholine in Canadian fish and shellfish by high performance liquid chromatography with atomic absorption detection and confirmation by fast atom bombardment mass spectrometry, J. Arg. Food Chem., 34: 315–318.

    Google Scholar 

  • Leffler, P., Gehardsson, L., Brune, D. and Nordberg, G.F., 1984, Lung retention of antimony and arsenic in hamsters after the intratracheal instillation of industrial dust, Scand. J. Work Environ. Health, 10: 245–251.

    Google Scholar 

  • Lerman, S.A., Clarkson, T.W. and Gerson, R.J., 1983, Arsenic uptake and metabolism by liver cells is dependent on arsenic oxidation state, Chem.-Biol. Interact., 45: 401–406.

    Google Scholar 

  • Liebscher, K. and Smith, H., 1968, Essential and nonessential trace elements. A method of determining whether an element is essential or nonessential in human tissue, Arch. Environ. Health, 17: 881–890.

    Google Scholar 

  • Lindgren, A., Vahter, M. and Dencker, L., 1982, Autoradiographic studies on the distribution of arsenic in mice and hamster administered 74As-arsenite or -arsenate, Acta Pharmacol. Toxicol., 51: 253–365.

    Google Scholar 

  • Lunde, G., 1973, Separation and analysis of organic-bound and inorganic arsenic in marine organisms, J. Sci. Food Agric., 24: 1021–1027.

    Google Scholar 

  • Luten, J.B. and Riekwel-Booy, G., 1982, Identification of arsenobetaine in sole, lemon sole, flounder, dab, crab and shrimps by field desorption and fast atom bombardment mass spectrometry, Chemosphere, 12: 131–141.

    Article  Google Scholar 

  • Mahieu, P., Buchet, J.P., Roels, H.A and Lauwerys, R., 1981, The metabolism of arsenic in humans acutely intoxicated by AS2O3. Its significance for the duration of BAL therapy, Clin. Toxicol., 18: 1067–1075.

    Google Scholar 

  • Mappes, R., 1977, Experiments on excretion of arsenic in urine, Int. Arch. Occup. Environ. Health, 40: 267–272 (in German).

    Google Scholar 

  • Marafante, E. and Vahter, M., 1984, The effect of methyl transferase inhibition on the metabolism of (74As)arsenite in mice and rabbits, Chem.-Biol. Interact., 50: 49–57.

    Google Scholar 

  • Marafante, E. and Vahter, M., 1987, Solubility, retention and metabolism of intratracheally and orally administered inorganic arsenic compounds in the hamster, Environ. Res., 42: 72–82.

    Google Scholar 

  • Marafante, E., Vahter, M. and Dencker, L., 1984, Metabolism of arsenocholine in mice, rats and rabbits, Sci. Total Environ., 34: 223–340.

    Google Scholar 

  • Marafante, E., Vahter, M. and Envall, J., 1985, The role of the methylation in the detoxication of arsenate in the rabbit, Chem.-Biol. Interact., 56: 225–238.

    Google Scholar 

  • Christakopoulos, A. and Ryhage, R., 1987, Biotransformation of dimethylarsinic in mouse, hamster and man, J. Appl. Toxicol., in press.

    Google Scholar 

  • Morita, M., Uehiro, T. and Fuwa, K., 1981, Determination of arsenic compounds in biological samples by liquid chromatography with inductively coupled argon plasma - atomic emission spectrometric detection, Anal. Chem., 53: 1806–1808.

    Google Scholar 

  • NAS, 1977, “Medical and Biological Effects of Environmental Pollutants: Arsenic,” National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Nordenson, I. and Beckman, L., 1982, Occupational and environmental risks in and around a smelter in northern Sweden. VII. Reanalysis and follow-up of chromosomal aberrations in workers exposed to arsenic, Hereditas, 96: 175–181.

    Google Scholar 

  • Nordenson, I., Salmonsson, S., Brun, E. and Beckman, G., 1979, Chromosome aberrations in psoriatic patients treated with arsenic, Hum. Genet., 48: 1–6.

    Google Scholar 

  • Norin, H. and Vahter, M., 1981, A rapid method for the selective analysis of total urinary metabolites of inorganic arsenic, Scand. J. Work Environ. Health, 7: 38–44.

    Google Scholar 

  • Norin, H., Ryhage, R., Christakopoulos, A. and Sandstrom, M., 1983, New evidence for the presence of arsenocholine in shrimps ( Panalus boreal is) by use of pyrolysis gas chromatography - atomic absorption spectrometry/mass spectrometry, Chemosphere, 12: 299–315.

    Google Scholar 

  • Norin, H., Christakopoulos, A., Sandstrom, M. and Ryhage, R., 1985a, Mass fragmentographic estimation of trimethylarsine oxide in aquatic organisms, Chemosphere, 14: 313–323.

    Article  CAS  Google Scholar 

  • Norin, H., Vahter, M., Christakopoulos, A. and Sandstrom, M., 1985b, Concentration of inorganic and total arsenic in fish from industrially polluted water, Chemosphere, 14: 325–334.

    Article  CAS  Google Scholar 

  • Odanaka, Y., Tsuchiya, N., Matano, 0. and Goto, S., 1983, Determination of inorganic arsenic and methyl arsenic compounds by gas chromatography and multiple ion detection mass spectrometry after hydride generation - heptane cold trap, Anal. Chem., 55: 929–932.

    Google Scholar 

  • Pearson, E.F. and Pounds, C.A., 1971, A case involving the administration of known amounts of arsenic and its analysis in hair, J. Forensic. Sci. Soc., 11: 229–234.

    Google Scholar 

  • Pershagen, G., Lind, B. and Bjorklund, N.-E., 1982, Lung retention and toxicity of some inorganic arsenic compounds, Environ. Res., 29: 425–434.

    Google Scholar 

  • Pietra, R., Sabbioni, E. and Marafante, E., 1981, Comparative

    Google Scholar 

  • metallobiological studies on present environmental levels of arsenic in mammals. I. Neutron activation analysis of nanogram levels of arsenic in tissues of laboratory animals, J. Radioanal. Chem., 62: 41–52.

    Google Scholar 

  • Pinto, S.S., Varner, M.O., Nelson, K.W., Labbe, A.L. and White, L.D., 1976, Arsenic trioxide absorption and excretion in industry, J. Occup. Med., 18: 677–680.

    Google Scholar 

  • Pomroy, C., Charbonneau, S.M.. McCullough, R.S. and Tam, G.K.H., 1980, Human retention studies with 74AS,Toxicol.Appl. Pharmacol., 53: 550–556.

    Google Scholar 

  • Pounds, C.A., Pearson, E.F. and Turner, T.D., 1979, Arsenic in fingernails, J. Forens. Sci. Soc., 19: 165.

    Google Scholar 

  • Robinson, A.L., 1983, GaAs readied for high-speed microcircuits, Science, 219: 275–277.

    Google Scholar 

  • Savoie, J.Y. and Weber, J.P., 1983, Evaluating laboratory performance via an interlaboratory comparison program for toxic substances in blood and urine, in: “Chemical Toxicology and Clinical Chemistry of Metals,” S.S. Brown and J. Savory, eds., Academic Press.

    Google Scholar 

  • Shapiro, A.A., 1967, Arsenic content of human hair and nails. Its interpretation, J.Forensic. Med., 14: 65–71.

    Google Scholar 

  • Shinagawa, A., Shiomi, K., Yamanaka, H. andKikuchi, T., 1983, Selective determination of inorganic arsenic (III), ( V) and organic arsenic in marine organisms, Bull. Jpn. Soc. Sci Fish., 49: 75–78.

    Google Scholar 

  • Siemer, D.D., Koteel, P. and Jariwala, V., 1976, Optimization of arsine generation in atomic absorption arsenic determinations, Anal. Chem., 48: 836.

    Google Scholar 

  • Siewicki, T.C., 1981, Tissue retention of arsenic in rats fed witch flounder or cacodylic acid, J. Nutr., 111: 602–609.

    PubMed  CAS  Google Scholar 

  • Smith, H., 1964, The interpretation of the arsenic content of human hair, J. Forensic. Sci. Soc., 4: 192–199.

    Google Scholar 

  • Smith, H. and Lenihan, J.M.A., 1964, Biological applications of activation analysis, in: “Methods of Forsenic Science,” A.S. Curry, ed., Vol. 3, Interscience Publishers, Inc., New York.

    Google Scholar 

  • Smith, T.J., Crecelius, E.A. and Reading, J.C., 1977, Airborne arsenic exposure and excretion of methylated arsenic compounds, Environ. Health Perspect., 19: 89–93.

    Google Scholar 

  • Talmi, Y. and Bostick, D.T., 1975, The determination of arsenic and arsenicals, J. Chromatogr. Sci., 13: 231–237.

    Google Scholar 

  • Tam, G.K.H. and Lacroix, G., 1980, Determination of arsenic in urine and feces by dry ashing, atomic absorption spectrometry, Intern. J. Environ. Anal. Chem., 8: 283–290.

    Google Scholar 

  • Tam, G.K.H., Charbonneau, S.M., Bryce, F. and Lacroix, G., 1978, Separation of arsenic metabolites in dog plasma and urine following intravenous injection of 74AS, Anal. Biochem., 86: 505–511.

    Google Scholar 

  • Tam, G.K.H., Charbonneau, S.M., Bryce, F., Pomroy, C. and Sandi, E., 1979, Metabolism of inorganic arsenic (74As) in humans following oral ingestion, Toxicol. Appl. Pharmacol., 50: 319–322.

    Google Scholar 

  • Tam, G.K.H., Charbonneau, S.M., Bryce, F. and Sandi, E., 1982, Excretion of a single oral dose of fish-arsenic in man, Bull. Environ. Contam. Toxicol., 28: 669–673.

    Google Scholar 

  • Tseng, W.-P., 1977, Effects and dose-response relationships of skin cancer and Blackfoot disease with arsenic, Environ. Health Perspect., 19: 109–119.

    Google Scholar 

  • U.S. Occupational Safety and Health Administration, 1983, Occupational exposure to inorganic arsenic, Fed. Reg., 48: 1864–1903.

    Google Scholar 

  • Uther, J.F., Freeman, H.C., Johnston, J.R. and Michalik, P., 1974, Comparison of wet ashing and dry ashing for the determination of arsenic in marine organisms, using methylated arsenicals for standards, J. AOAC, 57: 1363–1365.

    Google Scholar 

  • Vahter, M., 1986, Environmental and occupational exposure to inorganic arsenic, Acta Pharm. Tox., 59: 31–34.

    Google Scholar 

  • Vahter, M. and Lind, B., 1986, Concentrations of arsenic in urine of the general population in Sweden, Sci. Total Environ., 54: 1–12.

    Google Scholar 

  • Vahter, M. and Marafante, E., 1983, Intracellular interaction and metabolic fate of arsenite and arsenate in mice and rabbits, Chem. Biol. Interact., 47: 29–44.

    Google Scholar 

  • Vahter, M. and Marafante, E., 1985, Reduction and binding of arsenate in marmoset monkeys, Arch. Toxicol., 57: 119–124.

    Google Scholar 

  • Vahter, M., Marafante, E., Lindgren, A. and Dencker, L., 1982, Tissue distribution and subcellular binding of arsenic in marmoset monkeys after injection of 74As-arsenite, Arch. Toxicol., 51: 65–77.

    Google Scholar 

  • Vahter, M., Marafante, E. and Dencker, L., 1983, Metabolism of arsenobetaine in mice, rats and rabbits, Sci. Total Environ., 30: 197–211.

    Google Scholar 

  • Vahter, M., Marafante, E. and Dencker, L., 1984, Tissue distribution and retention of 74As-dimethylarsinic acid in mice and rats, Arch. Environ. Contam. Toxicol., 13: 259–264.

    Google Scholar 

  • Vahter, M., Friberg, L., Rahnster, B., Nygren, A. and Nolinder, P., 1986, Airborne arsenic and urinary excretion of metabolites of inorganic arsenic among smelter workers, Int. Arch. Occup. Environ. Health, 57: 79–91.

    Google Scholar 

  • Valentine, J.L., Kang, H.K. and Spivey, G., 1979, Arsenic levels in human blood, urine and hair in response to exposure via drinking water, Environ. Res., 20: 24–32.

    Google Scholar 

  • Valkonen, S., Jarvisalo, J. and Aitio, A., 1983, Urinary arsenic in a Finnish population without occupational exposure to arsenic, in: “Trace Element Analytical Chemistry in Medicine and Biology,” P. Bratter and P. Schramel, eds., Walter de Gruyter and Co., Berlin, Germany.

    Google Scholar 

  • Walsh, P.R., Fasching, J.L. and Duce, R.A., 1976, Losses of arsenic during the low temperature ashing of atmospheric particulate samples, Anal. Chem., 48: 1012–1014.

    Google Scholar 

  • Webb, J.L., 1966, Arsenicals, in: “Enzyme and Metabolic Inhibitors,” Volume 3, pp. 595–793, Academic Press, New York.

    Google Scholar 

  • Webb, D.R. and Carter, D.E., 1984, An improved wet digestion procedure for the analysis of total arsenic in biological samples by direct hydride atomic absorption spectrophotometry, J. Anal. Toxicol., 8: 118–123.

    Google Scholar 

  • Webb, D.R., Sipes, I.G. and Carter, D.E., 1984, In vitro solubility and in vivo toxicity of gallium arsenide, Toxicol. Appl. Pharmacol., 76: 96–104.

    Google Scholar 

  • Weber, J.P., 1986, Interlaboratory comparison program, annual report to participaNts 1985, Centre de Toxicologic du Quebec, Quebec, 20 pp.

    Google Scholar 

  • Wester, P.O., Brune, D. and Nordberg, G., 1981, Arsenic and selenium in lung, liver, and kidney tissues from lead smelter workers, Br. J. Ind. Med., 38: 179–184.

    Google Scholar 

  • Westoo, G. and Rydalv, M., 1972, Arsenic levels in foods, Var Foda, 24: 21–40 (in Swedish with English summary).

    Google Scholar 

  • Whitfield, F.B., Freeman, D.J. and Shaw, K.J., 1983, Trimethylarsine: An important off-flavour component in some prawn species, Chem. Ind., 20: 786–787.

    Google Scholar 

  • WHO, 1981, “Arsenic - Environmental Health Criteria 18,” World Health Organization, Geneva.

    Google Scholar 

  • WHO, 1987, Review of potentially harmful substances - arsenic, mercury and selenium, GESAMP Reports and Studies, World Health Organization, Geneva, to be published.

    Google Scholar 

  • Woolson, E.A., 1983, Emissions, cycling and effects of arsenic in soil ecosystems, in: “Biological and Environmental Effects of Arsenic,” Fowler, ed., pp. 51–139, Elsevier Science Publishers B.V., Amsterdam.

    Google Scholar 

  • Yamauchi, H. and Yamamura, Y., 1979, Urinary inorganic arsenic and methylarsenic excretion following arsenate-rich seaweed ingestion, Jpn. J. Ind. Health, 21: 47–54.

    Google Scholar 

  • Yamauchi, H. and Yamamura, Y., 1985, Metabolism and excretion of orally administered arsenic trioxide in the hamster, Toxicology, 34: 113–121.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Vahter, M.E. (1988). Arsenic. In: Clarkson, T.W., Friberg, L., Nordberg, G.F., Sager, P.R. (eds) Biological Monitoring of Toxic Metals. Rochester Series on Environmental Toxicity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0961-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0961-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42809-8

  • Online ISBN: 978-1-4613-0961-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics