Skip to main content

Inhomogeneously Broadened Spin-Label Spectra

  • Chapter
Spin Labeling

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 8))

Abstract

Inhomogeneous broadening of the ESR lines of nitroxide spin labels due to hyperfine structure is a pest that has complicated the work of spin labelers since shortly after the beginning of the spin-label era (Plachy and Kivelson, 1967; Poggi and Johnson, 1970) continually until the present (for example, Jolicoeur and Friedman, 1971; Kovarskii et al, 1972; Bullock et al, 1975; Ahn, 1976; Freed, 1976; Lim et al, 1976; Jones and Schwartz, 1981; Ottaviani et al, 1983; More et al, 1984; Lee and Shetty, 1985). It is a problem that can and has been solved rigorously for a number of spin labels by combining NMR, ESR, and chemical substitution techniques (Kreilick, 1967; Brière et al, 1967, 1970; Michon and Rassat, 1971; Chiarelli and Rassat, 1973; Lim et al, 1976; Barbarin et al, 1978a, 1978b; Labsky et al, 1980; Windle, 1981; Ottaviani, 1987). These techniques taken together establish the hyperfine patternof a given spin label and ESR simulation fine tunes the hyperfine coupling constants in a given set of experimental conditions. To proceed with rigor, this fine tuning must be done continually because the coupling constants vary with temperature (Kreilick, 1967; Brière et al, 1967,1970; Jolicoeur and Friedman, 1971; Atherton, 1975; Ottaviani, 1987) and solvent (Briere et al, 1970; Freed, 1976; Lim et al, 1976; Eaton et al, 1980; Windle, 1981; Ottaviani, 1987). Also, the effectivespacing of the hyperfine lines varies with spin-label concentration—a variation that depends strongly on temperature (Plachy and Kivelson, 1967). The effective spacing varies with spin-label alignment in an ordered fluid (Polnaszek and Freed, 1975; Bales et al, 1984) and one can imagine that it might vary with other experimental parameters as well. Thus, the problem can be complicated but it can be solved with remarkable precision in some cases, notably with spin labels having particularly simple patterns or ones that give partially resolved ESR spectra. It is a tedious procedure, unavoidable if high precision is required in an experiment involving partially resolved ESR spectra. In most of the spin-label literature, the spectra are unresolved, either intrinsically by nature of the spin label and the experiment, or artificially, because of broadening due to oxygen or some other paramagnetic species. In unresolved spectra the procedures to correct for inhomogeneity become quite simple and remarkably accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, M., 1976, Electron spin relaxation of ditertiary-butyl nitroxide in supercooled water, J. Chem. Phys. 64:134–138.

    Article  CAS  Google Scholar 

  • Atherton, N. M., and Strach, S. J., 1975, Environment dependence of proton hyperfine coupling in a nitroxide radical, J. Magn. Reson. 17:134–135.

    CAS  Google Scholar 

  • Bales, B. L., and Baur, M. E., 1970, EPR studies of DTBN in a lipid-water system, Chem. Phys. Lett. 7:341–345.

    Article  CAS  Google Scholar 

  • Bales, B. L., 1980, A simple, accurate method of correcting for unresolved hyperfine broadening in the EPR of nitroxide spin probes to determine the intrinsic linewidth and Heisenberg spin exchange frequency, J. Magn. Reson. 38:193–205.

    CAS  Google Scholar 

  • Bales, B. L., 1982, Correction for inhomogeneous line broadening in spin labels. II, J. Magn. Reson. 48:418–430.

    CAS  Google Scholar 

  • Bales, B. L., and Willett, D., 1983, Experimental verification of a method to extract spin exchange frequencies from EPR spectra of nitroxides, J. Magn. Reson. 51:138–144.

    CAS  Google Scholar 

  • Bales, B. L., and Willett, D., 1984, EPR investigation of the intermediate spin exchange regime, J. Chem. Phys. 80:2997–3004.

    Article  CAS  Google Scholar 

  • Bales, B. L., Dolin, R. A., and Schwartz, Robert N., 1984, An effective proton hyperfine tensor for di-tertbutylnitroxide, Liq. Cryst. Ord. Fluids 4:579–596.

    CAS  Google Scholar 

  • Bales, B. L., Schumacher, K. L., and Harris, F. L., 1987a, Correction for inhomogeneous line broadening in spin labels. III. Doxyl-labeled alkyl chains,J. Magn. Reson. 72:364–368.

    CAS  Google Scholar 

  • Bales, B. L., Schumacher, K. L., and Harris, F. L., 1987b, Temperature dependence of the inhomogeneous line broadening in the EPR spectra of doxyl-labeled alkyl chains, J. Phys. Chem.91:1701–1702.

    Article  CAS  Google Scholar 

  • Barbarin, F., Chevarin, B., Germain, J. P., Fabre, C., and Cabaret, D., 1978a, Resonance Paramagnetique, Mol. Cryst. Liq. Cryst. 46:181–193.

    Article  CAS  Google Scholar 

  • Barbarin, F., Chevarin, B., Germain, J. P., Fabre, C., and Cabaret, C., 1978b, Synthèse d’une sonde nitroxyde deuterée de forme allongée, Mol. Cryst. Liq. Cryst. 46:195–207.

    Article  CAS  Google Scholar 

  • Beth, A. H., Perkins Jr., R. C., Venkataramu, S. D., Pearson, D. E., Park, C. R., Park, J. H., and Dalton, L. R., 1980, Advantages of deuterium modification of nitroxide spin labels for biological EPR studies, Chem. Phys. Lett., 69:24–28.

    Article  CAS  Google Scholar 

  • Brière, R., Lemaire, H., Rassat, A., Rey, P., and Pousseau, A., 1967, Résonance magnétique nucléaire de radicaux libres nitroxydes piperidiniques, Bull. Soc. Chim. Fr.:4479–4484.

    Google Scholar 

  • Brière, R., Lemaire, H., Rassat, A., and Dunand, J., 1970, Etude de l’interconversion d’un radical libre nitroxyde piperidinique, par RMN à 310 MHz, Bull. Soc. Chim. Fr.:4220–4226.

    Google Scholar 

  • Bullock, A. T., Cameron, G. G., and Smith, P. M., 1975, Electron spin resonance studies of spin-labelled polymers—VIII, Eur. Poly. J., 11:617–624.

    Article  CAS  Google Scholar 

  • Calder, A., Forrester, A. R., Emsley, J. W., Luckhurst, G. R., and Storey, R. A., 1970, Nitroxide radicals Part VII. Nuclear and electron resonance spectra of some aromatic i-butyl nitroxides, Mol. Phys. 18:481–489.

    Article  CAS  Google Scholar 

  • Chesnut, D. B., 1977, On the use of the AW2 method for integrated line intensities from first derivative presentations, J. Magn. Reson. 25:373–374.

    CAS  Google Scholar 

  • Chiarelli, R., and Rassat, A., 1973, Nitroxydes LVI. Synthèses de radicaux nitroxydes deuteries, Tetrahedron 29:3639–3647.

    CAS  Google Scholar 

  • Currin, J. D., 1962, Theory of exchange relaxation of hyperfine structure in electron spin resonance, Phys. Rev. 126:1995–2001.

    Article  CAS  Google Scholar 

  • Dalton, L. A., Monge, J. L., Dalton, L. R., and Kwiram, A. L., 1974, Molecular and applied modulation effects in electron-electron double resonance. III. Bloch equation analysis for inhomogeneous broadening, Chem. Phys. 6:166–169.

    Article  CAS  Google Scholar 

  • Dobryakov, S. N., and Lebedev, Ya. S., 1969, Analysis of spectral lines whose profile is described by a composition of Gaussian and Lorentz profiles, Sov. Phys. Dokl. 13:873–875.

    Google Scholar 

  • Dunand, J., 1968, Résonance magnétique nucléaire—Haute résolution du proton dans des radicaux libres nitroxydes à 310 MHz, C. R. Acad. Sci. Paris 267:82–85.

    Google Scholar 

  • Eastman, M. P., Kooser, R. G., Das, M. R., and Freed, J. H., 1969, Studies of Heisenberg spin exchange in ESR spectra. I. Linewidth and saturation effects, J. Chem. Phys. 51:2690–2709.

    Article  CAS  Google Scholar 

  • Eaton, S. S., Willigen, H. V., Heinig, M. J., and Eaton, G. R., 1980, Endor measurement of long-range hyperfine coupling in a nitroxyl radical, J. Magn. Res. 38:325–330.

    CAS  Google Scholar 

  • Faber, R. J., Markley, F. W., and Weil, J. A., 1967, Hyperfine structure in the solution ESR spectrum of diieributyl nitroxide, J. Chem. Phys. 46:1652–1654.

    Article  CAS  Google Scholar 

  • Farach, H. A., and Teilelbaum, H., 1967, Spectroscopic line analysis using a Gaussian and Lorentzian convolution technique, Can. J. Phys. 45:2913–2921.

    Article  CAS  Google Scholar 

  • Fox, K. K., 1976, Isotropic proton hyperfine coupling constants of two cationic nitroxides, J. Chem. Soc., Faraday Trans. 2:975–982.

    Google Scholar 

  • Freed, J. H., 1966, On Heisenberg spin exchange in liquids, J. Chem. Phys. 45:3452–3453.

    Article  CAS  Google Scholar 

  • Freed, J. H., 1967, Theory of saturation and double resonance effects in electron spin resonance spectra. II. Exchange vs. dipolar mechanisms, J. Phys. Chem. 71:38–51.

    Article  CAS  Google Scholar 

  • Freed, J. H., 1976, Theory of slow tumbling ESR spectra for nitroxides, in Spin Labeling Theory and Application(L. J. Berliner, ed.), Chap. 3, Academic Press, New York.

    Google Scholar 

  • Goldman, S. A., Bruno, G. V., Polnaszek, C. F., and Freed, J. H., 1972, An ESR study of anistropic rotational reorientation and slow tumbling in liquid and frozen media, J. Chem. Phys. 56:716–735.

    Article  CAS  Google Scholar 

  • Hatch, G. F., and Kreilick, R. W., 1972, NMR of some nitroxide radicals: 13C coupling constants, J. Chem. Phys. 57:3696–3699.

    Article  CAS  Google Scholar 

  • Hauser, K. H., Brunner, H., and Jochims, J. C., 1966, Nuclear magnetic resonance of organic free radicals, Mol. Phys. 10:253–260.

    Article  Google Scholar 

  • Hommel, H., Faccini, L., Legrand, A. P., and Lecourtier, J., 1978, Mobility of spin labeled polyethylene oxide chains grafted on silica. Eur. Polym. J. 14:803–806.

    Article  CAS  Google Scholar 

  • Hubbell, W. L., and McConnell, H. M., 1968, Spin-label studies of the excitable membranes of nerve and muscle, Proc. Natl. Acad. Sci. USA 61:12–16.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, J. S., Mason, R. P., Hwang, L., and Freed, J. H., 1975, Electron spin resonance studies of anisotropic rotational reorientation and slow tumbling in liquid and frozen media. III. Perdeuterated 2,2,6,-tetramethyl-4-piperidone N-oxide and an analysis of fluctuating torques, J. Phys. Chem. 79:489–511.

    Article  CAS  Google Scholar 

  • Hyde, J. S., and Subczynski, W. K., 1984, Simulation of ESR spectra of the oxygen sensitive spin label probe CTPO, J. Magn. Res. 56:125–130.

    CAS  Google Scholar 

  • Janzen, E. G., Coulter, G. A., Oehler, V. M., and Bergsma, J. H., 1982, Solvent effects on the nitrogen and (3-hydrogen hyperfine splitting constants of aminoxyl radicals obtained in spin trapping experiments, Can. J. Chem. 60:2725–2733.

    Article  CAS  Google Scholar 

  • Johnson, Jr., C. S., 1967, Theory of line widths and shifts in electron spin resonance arising from spin exchange interactions, Mol. Phys. 12:25–31.

    Article  CAS  Google Scholar 

  • Jolicoeur, C., and Friedman, H. L., 1971, Effects of hydrophobic interactions on dynamics in aqueous solutions studied by EPR, Ber. Bunsenges. Phys. Chem. 75:248–257.

    CAS  Google Scholar 

  • Jones, L. L., and Schwartz, R. N., 1981, An electron paramagnetic resonance study of rotational and translational motion in solution, Mol. Phys. 43:527–555.

    Article  CAS  Google Scholar 

  • Kamlet, J. J., and Taft, R. W., 1979, Linear solvation energy relationships, Part 3. Some reinterpretations of solvent effects based on correlations with solvent and values, J. Chem. Soc., Perkin Trans. 254:349–356.

    Google Scholar 

  • Keith, A. D., Snipes, W., Mehlhorn, R. J., and Gunter, T., 1977, Factors restricting diffusion of water-soluble spin labels, Biophys. J. 19:205–218.

    Article  PubMed  CAS  Google Scholar 

  • King, M. D., Sachse, J. H., and Marsh, D., 1987, Unconstrained optimization method for interpreting the concentration and temperature dependence of the linewidths of interacting nitroxide spin labels. Application to the measurement of translational diffusion coefficients of spin-labeled phospholipids in membranes, J. Magn. Reson. 72:257–267.

    CAS  Google Scholar 

  • Kirste, B., Kruger, A., and Kurreck, H., 1982, ESR and ENDOR investigations of spin exchange in mixed galvinoxyl/nitroxide biradicals. Syntheses, J. Am. Chem. Soc. 104:3850–3858.

    Article  CAS  Google Scholar 

  • Kivelson, D., 1972, Electron spin relaxation in liquids, in Electron Spin Relaxation in Liquids, (L. T. Muus and P. W. Atkins, eds.), Plenum, New York, pp. 213–277.

    Google Scholar 

  • Knauer, B. R., and Napier, J. J., 1976, The nitrogen hyperfine splitting constant of the nitroxide functional group as a solvent polarity parameter. The relative importance for a solvent polarity parameter of its being a cybotactic probe vs. its being a model process, J. Am. Chem. Soc. 98:4395–4400.

    Article  CAS  Google Scholar 

  • Kopf, P. W., and Kreilick, R. W., 1969, Magnetic resonance studies of some phenoxy and nitroxide biradicals, J. Am. Chem. Soc. 91:6569–6573.

    Article  CAS  Google Scholar 

  • Kotake, Y., Tomita, Y., and Kuwata, K., 1985, Proton hyperfine splitting and slow motion of spin labels in frozen glycerol as detected by ENDOR, J. Phys. Chem. 89:207–209.

    Article  CAS  Google Scholar 

  • Kovarskii, A. L., Wasserman, A. M., and Buchachenko, A. L., 1972, The study of rotational and translational diffusion constants for stable nitroxide radicals in liquids and polymers, J. Magn. Reson. 7:225–237.

    CAS  Google Scholar 

  • Kowert, B. A., Bamoro, J. J., Walters, K. M., Crimi, J. J., and Mendez Jr., S., 1985, Reorientational information from the intensities of nitroxide electron spin resonance spectra, J. Magn. Reson. 63:573–578.

    CAS  Google Scholar 

  • Kreilick, R. W., 1966, NMR spectra of some nitroxide radicals, J. Chem. Phys. 45:1922–1924.

    Article  CAS  Google Scholar 

  • Kreilick, R. W., 1967, NMR studies of a series of aliphatic nitroxide radicals, J. Chem. Phys. 46:4260–4264.

    Article  CAS  Google Scholar 

  • Kuznetsov, A. N., Volkov, A. Y., Livshits, V. A., and Mirzoian, A. T., 1974, A method of studying anisotropic rotation of organic nitroxyl radicals, Chem. Phys. Lett. 26:369–372.

    Article  CAS  Google Scholar 

  • Labsky, J. J., Pilar, J., and Lovy, J., 1980, Magnetic resonance study of 4-amino-2,2,6,6-tetramethyl- piperidine-Noxyl and its deuterated derivatives, J. Magn. Reson. 37:515–522.

    CAS  Google Scholar 

  • Lang Jr., J. C., and Freed, J. H., 1972, ESR study of Heisenberg spin exchange in a binary liquid solution near the critical point, J. Chem. Phys. 56:4103–4114.

    Article  CAS  Google Scholar 

  • Lee, P. L., 1977, Width of a Lorentzian convoluted with a Gaussian, Nucl. Instrum. Methods 144:363–365.

    Article  Google Scholar 

  • Lee, S, and Shetty, A., 1985, Fast orientational-motional correlation time measurements from ESR hyperfine spectra of perdeuterated nitroxides with 15N (l= 1/2), J. Chem. Phys. 83:499–505.

    Article  CAS  Google Scholar 

  • Lim, Y. Y., Smith, E. A., and Symons, R. C., 1976, Solvation spectra Part 51.—Diibutyl nitroxide as a probe for studying water and aqueous solutions, J. Chem. Soc., Faraday Trans. 1 72:2876–2891.

    Google Scholar 

  • Marriott, T. B., Van, S. P., and Griffith, O. H., 1976, Axial isomer and ESR spectra of the steroid spin label, 3-doxyl-5-cholestane, J. Magn. Reson. 24:41–52.

    CAS  Google Scholar 

  • Michon, P., and Rassat, A., 1971, No. 601.—Nitroxydes XLII: Signe des couplages à longue distance, électro-protons dans des nitroxydes oxazolidiniques. Etude conformationnelle par RMN, Bull. Soc. Chim. Fr.:3561–3567.

    Google Scholar 

  • Michon, P., and Rassat, A., 1974, Nitroxides. LVIII. Structure of steroidal spin labels, J. Org. Chem. 39:2121–2124.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W. G., 1979, Spin-labeled synthetic polymers, in Spin Labeling II Theory and Applications(L. J. Berliner, ed.), Chap. 4, Academic Press, New York.

    Google Scholar 

  • Molin, Yu. N., Salikhov, K. M., and Zamaraev, K. I., 1980 Spin exchange principles and applications in chemistry and biology, Springer-Verlag, Berlin.

    Google Scholar 

  • More, K. M., Eaton, G. R., and Eaton, S. S., 1984, Determination of T1and T2by simulation of EPR power saturation curves and saturated spectra. Application to spin-labeled iron porphyrins, J. Magn. Res. 60:54–65.

    CAS  Google Scholar 

  • Morrisett, J. D., 1976, The use of spin labels for studying the structure and function of enzymes, in Spin Labeling Theory and Applications(L. J. Berliner, ed.), Chap. 8, Academic Press, New York.

    Google Scholar 

  • Mossoba, M. M., Makino, K., Riesz, P., and Perkins Jr., R. C., 1984, Long-range proton hyperfine coupling in alicyclic nitroxide radicals by resolution-enhanced electron paramagnetic resonance, J. Phys. Chem. 88:4717–4723.

    Article  CAS  Google Scholar 

  • Mukerjee, P., Ramachandran, C., and Pyter, R. A., 1982, Solvent effects on the visible spectra of nitroxides and relation to nitrogen hyperfine splitting constants. Nonempirical polarity scales for aprotic and hydroxylic solvents, J. Phys. Chem. 86:3189–3197.

    Article  CAS  Google Scholar 

  • Ohzeki, F., Kispert, L. D., Arroyo, D. C., and Steffan, M., 1982, Electron nuclear double resonance study of the spin-label tanol (tempol) oriented in the inclusion compound 2’hydroxy-2,4,4,7,4’- pentamethylflavan, J. Phys. Chem. 86:4011–4016.

    Article  CAS  Google Scholar 

  • Ottaviani, M. F., Baglioni, P., and Martini, G., 1983, Micellar solutions of sulfate surfactants studied by electron spin resonance of nitroxide radicals. 1. Use of neutral and positively charged spin probes, J. Phys. Chem. 87:3146–3153.

    Article  CAS  Google Scholar 

  • Ottaviani, M. F., 1987, Analysis of resolved ESR spectra of neutral nitroxide radicals in ethanol and pyridine: The dynamic behavior in fast motion conditions, J. Phys. Chem. 91:779–784.

    Article  CAS  Google Scholar 

  • Parker, G. W., 1970, Nuclear magnetic resonance line shapes in solids, Am. J. Phys. 38:1432–1439.

    Article  CAS  Google Scholar 

  • Plachy, W., and Kivelson, D., 1967, Spin exchange in solutions of ditertiary-butyl nitroxide, J. Chem. Phys. 47:3312–3318.

    CAS  Google Scholar 

  • Poggi, G., and Johnson Jr., C. S., 1970, Factors involved in the determination of rotational correlation times for spin labels, J. Magn. Res. 3:436–445.

    CAS  Google Scholar 

  • Polnaszek, C. F., and Freed, J. H., 1975, Electron spin resonance studies of anisotropic ordering, spin relaxation, and slow tumbling in liquid crystalline solvents, J. Phys. Chem. 79:2283–2306.

    Article  CAS  Google Scholar 

  • Polnaszek, C. F., Schreier, S., Butler, K. W., and Smith, I. C. P., 1978, Analysis of the factors determining the EPR spectra of spin probes that partition between aqueous and lipid phases, J. Am. Chem. Soc. 100:8223–8232.

    Article  CAS  Google Scholar 

  • Portis, A. M., 1953, Electronic structure of F centers: Saturation of the electron spin resonance, Phys. Rev. 91:1071–1078.

    Article  CAS  Google Scholar 

  • Reddock, A. H., and Konishi, S., 1979, The solvent effect on diterf-butyl nitroxide. A dipole-dipole model for polar solutes in polar solvents, J. Chem. Phys. 70:2121–2130.

    Article  Google Scholar 

  • Reif, F., 1965, Fundamental of Statistical and Thermal Physics, Chap. 1, McGraw-Hill, New York.

    Google Scholar 

  • Schreier, S., Polnaszek, C. F., and Smith, I. C. P., 1978, Spin labels in membranes, problems in practice, Biochim. Biophys. Acta 515:375–436.

    Google Scholar 

  • Stillman, A. M., and Schwartz, R. N., 1976, Heisenberg exchange in inhomogeneously broadened nitroxide EPR spectra, J. Magn. Reson. 22:269–277.

    CAS  Google Scholar 

  • Stoneham, A. M., 1972, Linewidths with Gaussian and Lorentzian broadening, J. Phys. D 5:670–672.

    Article  CAS  Google Scholar 

  • Swartz, H. M., 1987, Use of nitroxides to measure redox metabolism in cells and tissues, J. Chem. Soc., Faraday Trans. 183:191–202.

    Google Scholar 

  • Trousson, P., and Lion, Y., 1985, Fourier transform numerical analysis of the long-range proton hyperfine coupling in nitroxide radicals, J. Phys. Chem. 89:154–158.

    Article  Google Scholar 

  • Tsay, F. D., Hong, S. D., Moacanin, J., and Gupta, A., 1982, Studies of magnetic resonance phenomena in polymers. I. The effects of free volume and segmental mobility on the motion of nitroxide spin probes and labels in poly(methyl methacrylate), J. Polym. Sci., Polym. Phys. Ed. 20:763–775.

    Article  CAS  Google Scholar 

  • Wertheim, G. K., Butler, M. A., West, K. W., and Buchanan, D. N. E., 1974, Determination of the Gaussian and Lorentzian content of experimental line shapes, Rev. Sci. Instrum. 45:1369–1371.

    Article  Google Scholar 

  • Whisnant, C. C., Ferguson, S., and Chesnut, D. B., 1974, Hyperfine models for piperidine nitroxides, J. Phys. Chem. 78:1410–1415.

    Article  CAS  Google Scholar 

  • Windle, J. J., 1981, Hyperfine coupling constants for nitroxide spin probes in water and carbon tetrachloride, J. Magn. Reson. 45:432–439.

    CAS  Google Scholar 

  • Zager, S. A., and Freed, J. H., 1982a, Electron-spin relaxation and molecular dynamics in liquids.I. Solvent dependence, J. Chem. Phys. 77:3344–3359.

    Article  CAS  Google Scholar 

  • Zager, S. A., and Freed, J. H., 1982b, Electron-spin relaxation and molecular dynamics in liquids. II. Density dependence, J. Chem. Phys. 77:3360–3375.

    Article  CAS  Google Scholar 

  • Zemansky, M. W., 1930, Absorption and collision broadening of the mercury resonance line, Phys. Rev. 36:219–238.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Bales, B.L. (1989). Inhomogeneously Broadened Spin-Label Spectra. In: Berliner, L.J., Reuben, J. (eds) Spin Labeling. Biological Magnetic Resonance, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0743-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0743-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8060-6

  • Online ISBN: 978-1-4613-0743-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics