Skip to main content

Regulation of Pancreatic Exocrine Function by Manganese

  • Chapter
Trace Elements in Man and Animals 6

Abstract

The pancreas is a heterogenous organ consisting of clusters of endocrine cells that are dispersed throughout the exocrine tissue. The endocrine cells secrete insulin, glucagon, somatostatin, and a variety of other peptides into the blood. The exocrine tissue consists of acinar cells that synthesize digestive enzymes and duct cells that produce bicarbonate rich fluid. Under normal physiological conditions numerous factors interact to enable the endocrine and exocrine pancreas to respond to a meal in a highly coordinated manner that contributes to the digestion and subsequent assimilation of ingested food. This regulation involves an interplay between neurotransmitters, nutrients, gastrointestinal hormones, and islet cell hormones acting through a variety of second messengers. Because of the relative richness of the pancreas in manganesel, it has been suggested that this divalent cation may also participate in the regulation of pancreatic function. This hypothesis is supported by several types of observations. Thus, manganese is taken up from the systemic circulation by the pancreas, and the concentration of manganese in the pancreatic duct is greater than in the blood2. Second-generation manganese-deficient animals may exhibit ultrastructural damage or complete atrophy of the pancreatic acinar ce113,4. These animals also exhibit beta cell dysfunction that is manifested by decreased insulin secretion and synthesis, and enhanced insulin degradations5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. L. Keen, B. Lonnerdal, and L. S. Hurley, Manganese, in: Biochemistry of the Essential Ultratrace Elements, E. Frieden, ed., Plenum Pub. Co., New York (1984).

    Google Scholar 

  2. W. T. Burnett, R. R. Bigelow, A. W. Kimball, and C. W. Sheppard, Radiomanganese studies on the mouse, rat and pancreatic fistula dog, Am. J. Physiol. 168: 620 (1952).

    PubMed  CAS  Google Scholar 

  3. L. T. Bell, and L. S. Hurley, Ultrastructural effects of manganese deficiency in liver, heart, kidney, and pancreas of mice, Lab. Invest. 29: 723 (1973).

    CAS  Google Scholar 

  4. R. E. Schrader, and G.J. Everson, Pancreatic pathology in manganese-deficient guinea pigs, J. Nutr. 94: 269 (1968).

    Google Scholar 

  5. D. L. Baly, D. L. Curry, C. L. Keen, and L. S. Hurley, Dynamics of insulin and glucagon release in rats: influence of dietary manganese, Endocrinology 116: 1734 (1985).

    Article  PubMed  CAS  Google Scholar 

  6. S. Abdelmoumene, and J. D. Gardner, Effect of extracellular manganese on amylase release from dispersed pancreatic acini, Am. J. Physiol. 241: G359 (1981).

    PubMed  CAS  Google Scholar 

  7. T. Kanno, and O. Nishimura, Stimulus-secretion coupling in pancreatic acinar cells: inhibitory effects of calcium removal and manganese addition on pancreozymin-induced amylase release, J. Physiol. (London) 257: 309 (1976).

    CAS  Google Scholar 

  8. O. H. Petersen, and N. Ueda, Pancreatic acinar cells: the role of calcium in stimulus-secretion coupling, J. Physiol. (London) 254: 583 1976.

    CAS  Google Scholar 

  9. M. Korc, Manganese action on pancreatic protein synthesis in normal and diabetic rats, Am. J. Physiol. 245: G628 (1983).

    PubMed  CAS  Google Scholar 

  10. M. Korc, A. C. Bailey, and J.A. Williams. Regulation of protein synthesis in isolated rat pancreatic acini by cholecystokinin, Am. J. Physiol. 241: G116 (1981).

    PubMed  CAS  Google Scholar 

  11. M. Korc, Manganese action on protein synthesis in diabetic rat pancreas: evidence for a possible physiological role, J. Nutr. 2119 (1984).

    Google Scholar 

  12. C. S. Rubin, J. Erlichman, and O. M. Rosen, Cyclic adenosine 3’,5’-monophosphate-dependent protein kinase of human erythrocyte membranes, J. Biol. Chem. 247: 6135 (1972).

    PubMed  CAS  Google Scholar 

  13. Y. M. Lin, Y. P. Liu, and W. Y. Cheung, Cyclic 3’:5’-nucleotide phosphodiesterase purification, characterization, and active form of the protein activator from bovine brain, J. Biol. Chem. 249: 4943 (1974).

    PubMed  CAS  Google Scholar 

  14. B. E. Argent, R. M. Case, and F. C. Hirst, The effects of manganese, cobalt and calcium on amylase secretion and calcium homeostasis in rat pancreas, J. Physiol. (London) 323: 353 (1982).

    CAS  Google Scholar 

  15. M. Korc, and M. H. Schoni, Quin-2 and manganese define multiple alterations in cellular calcium homeostasis in diabetic rat pancreas, Diabetes, In Press.

    Google Scholar 

  16. M. Korc, Effect of lanthanum on pancreatic protein synthesis in streptozotocin-diabetic rats. Am. J. Physiol. 244: G321 (1983).

    PubMed  CAS  Google Scholar 

  17. M. Korc, Regulation of pancreatic protein synthesis by cholecystokinin and calcium. Am. J. Physiol. 243: G69–75, 1982.

    PubMed  CAS  Google Scholar 

  18. M. Korc, and M. H. Schoni, Modulation of cytosolic free calcium levels by extracellular phosphate and lanthanum, Proc. Natl. Acad. Sci. USA 84: 1282 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. Y. Nagamine, D. Mizuno, and S. Natori, Differences in the effects of manganese and magnesium on initiation and elongation in the RNA polymerase I reaction, Biochim. Biophys. Acta, 519: 440, (1978).

    CAS  Google Scholar 

  20. R. E. Thiers, and B. L. Vallee, Distribution of metals in subcellular fractions of rat liver, J. Biol. Chem. 226: 911 (1957).

    PubMed  CAS  Google Scholar 

  21. P. M. Brannon, V. P. Collins and M. Korc, Alterations of pancreatic digestive enzyme content in the manganese-deficient rat, J. Nutr. 117: 305, (1987).

    PubMed  CAS  Google Scholar 

  22. P. M. Brannon, A. S. Demarest, J. Sabb, and M. Korc, Dietary modulation of epidermal growth factor action in cultured pancreatic acinar cells of the rat, J. Nutr. 116: 1306 (1986).

    PubMed  CAS  Google Scholar 

  23. L. Werner, M. Korc, and P. M. Brannon, Effects of manganese deficiency on dietary adaptation of the pancreas, Fed. Proc. 45: 368 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Korc, M., Brannon, P.M. (1988). Regulation of Pancreatic Exocrine Function by Manganese. In: Hurley, L.S., Keen, C.L., Lönnerdal, B., Rucker, R.B. (eds) Trace Elements in Man and Animals 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0723-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0723-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8050-7

  • Online ISBN: 978-1-4613-0723-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics