Skip to main content

Abstract

We show that given certain plausible assumptions the existence of persistent states in a neural network can occur only if a certain transfer matrix has degenerate maximum eigenvalues. The existence of such states of persistent order is directly analogous to the existence of long range order in an Ising spin system; while the transition to the state of persistent order is analogous to the transition to the ordered phase of the spin system. It is shown that the persistent state is also characterized by correlations between neurons throughout the brain. It is suggested that these persistent states are associated with short term memory while the eigenvectors of the transfer matrix are a representation of long term memory. A numerical example is given that illustrates certain of these features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. M. Smith, The Brain, G. P. Putmanns, New York (1970).

    Google Scholar 

  2. A. L. Hodgkin and A. F. Huxley, Nature 144, 710 (1939).

    Article  ADS  Google Scholar 

  3. L. I. Schiff, Quantum Mechanics, 3rd ed., McGraw-Hill, New York (1968).

    Google Scholar 

  4. H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 (1941).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25, 353 (1953).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. K. Huang, Statistical Mechanics, Wiley, New York (1963).

    Google Scholar 

  7. J. Ashkin and W. E. Lamb, Jr., Phys. Rev. 64, 159 (1943).

    Article  ADS  Google Scholar 

  8. E. N. Lassettre and J. P. Howe, J. Chem. Phys. 9, 747, 801 (1941).

    Google Scholar 

  9. T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M. R. Moldover and W. A. Little, Phys. Rev. Letters 15, 54 (1965).

    Article  ADS  Google Scholar 

  11. J. N. Franklin, Matrix Theory, Prentice-Hall, Engelwood Cliffs, N.J. (1968).

    MATH  Google Scholar 

  12. Ibid., p. 275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 American Elsevier Publishing Company, Inc.

About this chapter

Cite this chapter

Little, W.A. (1974). The Existence of Persistent States in the Brain. In: Cabrera, B., Gutfreund, H., Kresin, V. (eds) From High-Temperature Superconductivity to Microminiature Refrigeration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0411-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0411-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8040-5

  • Online ISBN: 978-1-4613-0411-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics