Skip to main content

Mechanisms of Chromosomal Translocations in Malignant Lymphomas

  • Chapter
Molecular Biology of Hematopoiesis 5

Abstract

Recurring and highly consistent chromosomal abnormalities are a feature of many hematopoietic neoplasms. They are carried throughout the malignant cells indicating that they occurred prior to clonal expansion. Over the last decade it has become clear that distinct translocations play a major role in the pathogenesis of malignant lymphomas. The main cytogenetic changes are exhibited by deletions, translocations and inversions of genetic material, resulting in loss of tumor suppressor genes, activation of proto-oncogene products or creation of tumor-specific fusion proteins.

Molecular genetic analyses of chromosomal translocations in lymphomas have demonstrated rearrangements of immunoglobulin (Ig) and T-cell receptor (TCR) genes as a consequence of chromosomal breakage. The frequent involvement of Ig and TCR genes in lymphoid chromosome translocations suggests a role of site specific recombinases in aberrant recombination. Additional mechanisms may be involved in this process: Polypurine stretches (Alu-elements) can act as targets for endonucleases and breakpoint binding proteins can stimulate homologous site-specific recombination in conjunction with nucleases. The putative molecular mechanisms leading to a new chromosomal translocation t(14;18)(qll;q23) in a T-cell line established from a patient with ataxia telangiectasia will be discussed. The characterization of these molecular events will not only provide further insight into the pathogenesis of lymphoid tumors but will enable the development of diagnostic probes for the detection of cytogenetic abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. . Rabbitts TH: Chromosomal translocations in human cancer. Nature 372: 143, 1994

    Article  PubMed  CAS  Google Scholar 

  2. . Yano T, Sander CA, Clark HM, Dolezal MV, Jaffe, ES, Raffeld M: Clustered mutations in the second exon of the MYC gene in sporadic Burkitt’s lymphoma. Oncogene 8: 2741, 1993

    PubMed  CAS  Google Scholar 

  3. . Cossman J, Uppenkamp M, Sundeen J, Coupland R, Raffeld M: Molecular genetics and the diagnosis of lymphoma. Arch Pathol Lab Med 112: 117, 1988

    PubMed  CAS  Google Scholar 

  4. . Lewin B: Genes III; John Wiley &Sons, New York 3rd ed.:641, 1987

    Google Scholar 

  5. . Weei-Chin Lin, Desiderio S: Regulation of V(D)j recombination activator protein RAG-2 by phosphory¬lation. Science 260: 953, 1993

    Article  Google Scholar 

  6. . Schatz DG, Baltimore D: Stable expression of immunoglobulin gene V(D)J recombinase activity by gene transfer into 3T3 fibroblasts. Cell 53: 107, 1988

    Article  PubMed  CAS  Google Scholar 

  7. . Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce CM: The t(14; 18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229: 1390, 1985

    Article  PubMed  CAS  Google Scholar 

  8. . Finger LR, Harvey RC, Moore RCA, Showe LC, Croce CM: A common mechanism of chromosomal translocation in T- and B-cell neoplasia. Science 234: 982, 1986

    Article  PubMed  CAS  Google Scholar 

  9. . Bakhshi A, Wright JJ, Graninger W, Seto M, Owens J, Cossman J, Jensen JP, Goldman P, Korsmeyer SJ: Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci USA 84: 2396, 1987

    Article  PubMed  CAS  Google Scholar 

  10. . Jaeger U, Purtscher B, Delle Karth G, Knapp S, Mannhalter C, Lechner K: Mechanism of the chromoso¬mal translocation t(14; 18) in lymphoma: detection of a 45-Kd breakpoint binding protein. Blood 81: 1833, 1993

    PubMed  CAS  Google Scholar 

  11. . Wahls WP, Wallace LJ, Moore PD: Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells. Cell 60: 95, 1990

    Article  PubMed  CAS  Google Scholar 

  12. . Krowczynska AM, Rudders RA, Krontiris TG: The human minisatellite consensus at breakpoints of oncogene translocations. Nucl Acid Res 18: 1121, 1990

    Article  CAS  Google Scholar 

  13. . Gerstein RM, Frankel WN, Chih-Lin Hsieh, Durdik JM, Rath S, Coffin JM, Nisonoff A, Seising E: Isotype switching of an immunoglobulin heavy chain transgene occurs by DNA recombination between different chromosomes. Cell 63: 537, 1990

    Article  PubMed  CAS  Google Scholar 

  14. . Iwasato T, Shimizu A, Honjo T, Yamagishi H: Circular DNA is excised by immunoglobulin class switch recombination. Cell 62: 143, 1990

    Article  PubMed  CAS  Google Scholar 

  15. . Chen SJ, Chen Z, D’Auriol L, LeConiat M, Grausz D, Berger R: Ph+bcr- acute leukemias: implication of Alu sequences in a chromosomal translocation occurring in the new cluster region within the BCR gene. Oncogene 4: 195, 1989

    PubMed  CAS  Google Scholar 

  16. . Jeffreys AJ, Wilson V, Swee Lay Thein: Hypervariable ‘minisatellite’ regions in human DNA. Nature 314: 67, 1985

    Article  PubMed  CAS  Google Scholar 

  17. Boder E: Ataxia-telangiectasia: an overview. In: Ataxia telangiectasia (Gratti RA & Swift M, Eds), Kroc Foundation Series. AR Liss Inc, New York 1985

    Google Scholar 

  18. Aurias A, Dutrillaux B: Probable involvement of immunoglobulin superfamily genes in most recurrent chromosomal rearrangements from ataxia telangiectasia. Hum Genet 72:210, 1986

    Article  PubMed  CAS  Google Scholar 

  19. Uppenkamp M, Gana Dresen I, Becher R, Raffeld M, Meusers P: Molecular analysis of an ataxia telangiectasia T-cell clone with a chromosomal translocation t(14;18) - evidence for a breakpoint in the T-cell receptor d-chain gene. Leukemia Res 16: 681, 1992

    Article  CAS  Google Scholar 

  20. Becher R, Dührsen, U: Distinct chromosome abnormalities in ataxia telangiectasia with chronic T-cell lymphocyticleukemia. Cancer Genet Cytogenet 26:217, 1987

    Article  PubMed  CAS  Google Scholar 

  21. Isobe M, Russo G, Haluska F, Croce CM: Cloning of the gene encoding the d subunit of the human T-cell receptor reveals its physical organization within the a-subunit locus and its involvement in chromosomal tranlations in T-cell malignancies. Proc Natl Acad Sci USA 85:3933, 1988

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Uppenkamp, M.J., Höffkes, HG., Meusers, P., Brittinger, G. (1996). Mechanisms of Chromosomal Translocations in Malignant Lymphomas. In: Abraham, N.G., Asano, S., Brittinger, G., Maestroni, G.J.M., Shadduck, R.K. (eds) Molecular Biology of Hematopoiesis 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0391-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0391-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8031-3

  • Online ISBN: 978-1-4613-0391-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics