Skip to main content

Photoionization of Oriented Systems and Circular Dichroism

  • Chapter
VUV and Soft X-Ray Photoionization

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

Circular dichroism (CD) spectroscopy is a modification of normal absorption spectroscopy using circularly polarized light instead of unpolarized light for determining the difference in the absorption coefficients for right and left circularly polarized light, respectively, in optically active samples. Thus, there is nothing mysterious about CD spectroscopy. However, relative to most other spectroscopic techniques there seems to be a large psychological barrier in its application and at least physicists often regard CD, and optical activity in general, as a rather obscure technique without any useful application. There are some understandable reasons for this attitude, manifesting themselves strikingly in the fact that CD is hardly ever treated in elementary physics textbooks:

  • Though optical activity is one of the oldest known physical phenomena, it was only 30 years ago that instruments for measuring CD spectra became available.

  • Samples which are optically active consist of so-called “chiral” crystals or “chiral” molecules; these are crystals or molecules which are not superimposable onto their mirror image. In the majority of cases, molecules with this property consist of so many atoms that physicists believe them not to be suitable for basic physical investigations.

  • Up till now there exists no straightforward theory of optical activity; data are in most cases interpreted on the basis of more or less empirical rules with restricted validity and only in very few cases is it possible to extract from the data the structural information about the investigated molecules being included in the spectra. Furthermore there is still a lack of systematic and reliable data for a quantitative comparison with theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Djerassi, Optical Rotatory Dispersion: Applications to Organic Chemistry (McGraw-Hill, New York, 1960).

    Google Scholar 

  2. L. Velluz, M. Legrand, and M. Grosjean, Optical Circular Dichroism: Principles, Measurements and Applications (Verlag Chemie, Weinheim, 1965).

    Google Scholar 

  3. D. J. Caldwell and H. Eyring, The Theory of Optical Activity (Wiley-Interscience, New York, 1971).

    Google Scholar 

  4. P. Crabbé, Optical Rotatory Dispersion and Circular Dichroism in Chemistry and Biochemistry (Academic Press, New York, 1972).

    Google Scholar 

  5. E. Charney, The Molecular Basis of Optical Activity, Optical Rotatory Dispersion and Circular Dichroism (Wiley, New York, 1979).

    Google Scholar 

  6. S. F. Mason, Molecular Optical Activity and the Chiral Discriminations (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  7. N. Harada and K. Nakanishl Circular Dichroic Spectroscopy, Exciton Coupling in Organic Stereochemistry (Oxford University Press, Oxford, 1983).

    Google Scholar 

  8. P. J. Stephens and M. A. Lowe, Annu. Rev. Phys. Chem. 36, 213 (1985).

    ADS  Google Scholar 

  9. F. S. Richardson and J. P. Riehl, Chem. Rev. 77, 773 (1977).

    Google Scholar 

  10. I. Tinoco, Jr, and A. L. Williams, Jr, Annu. Rev. Phys. Chem. 35, 329 (1984).

    ADS  Google Scholar 

  11. R. Janoschek (Ed.), Chiralitv, From Weak Bosons to the α -Helix (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  12. J. B. Biot, Mem. Acad. Sci. Fr. 2, 41 (1817).

    Google Scholar 

  13. W. P. Healy, J. Phys. B 7, 1633 (1974).

    ADS  Google Scholar 

  14. T. Hirano, A. Sato, T. Tsuruta, and W. C. Johnson, Jr, J. Polym. Sci. Polym. Phys. Ed. 17, 1601 (1979).

    ADS  Google Scholar 

  15. A. D. Buckingham and P. J. Stephens, Annu. Rev. Phys. Chem. 17, 399 (1966).

    ADS  Google Scholar 

  16. J. A. Schellman, Chem. Rev. 75, 323 (1975).

    Google Scholar 

  17. D. C. Walker (Ed.), Origins of Optical Activity in Nature (Elsevier, Amsterdam, 1979).

    Google Scholar 

  18. A. J. MacDermott, 4th Int. Conf on CD, Bochum 1991, Book of lectures and posters, p. 75 (1991).

    Google Scholar 

  19. M. Grosjean and M. Legrand, Compt. Rend. Paris 251, 2150 (1960).

    Google Scholar 

  20. A. F. Drake, J. Phys. E 19, 170 (1986).

    ADS  Google Scholar 

  21. M. Billardon and J. Badoz, Compt. Rend. Paris 262, 1672 (1966).

    Google Scholar 

  22. J. C. Kemp, J. Opt. Soc. Am. 59, 950(1969).

    ADS  Google Scholar 

  23. S. N. Jasperson and S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).

    ADS  Google Scholar 

  24. L. F. Mollenhauer, D. Dqwnie, H. Engstrom, and W. B. Grant, Appl. Opt. 8, 661 (1969).

    ADS  Google Scholar 

  25. J. C. Cheng, L. A. Nafie, S. D. Allen, and A. I. Braunstein, Appl. Opt. 15, 1960 (1976).

    ADS  Google Scholar 

  26. Hinds International Inc., Photoelastic Modulator Systems, 1988.

    Google Scholar 

  27. D. E. Eastman and I. J. Donelon, Rev. Sci. Instrum. 41, 1648 (1970).

    ADS  Google Scholar 

  28. W. C. Johnson, Jr, Rev. Sci. Instrum. 42, 1283 (1971).

    ADS  Google Scholar 

  29. W. C. Johnson, Jr, Rev. Sci. Instrum. 35, 1375 (1964).

    ADS  Google Scholar 

  30. A. F. Drake and S. F. Mason, J. Phys. Colloq. 39, C4 212 (1978).

    Google Scholar 

  31. M. B. Robin, N. A. Keubler, and Y. H. Pao, Rev. Sci. Instrum. 37, 922 (1966).

    ADS  Google Scholar 

  32. E. S. Pysh, Annu. Rev. Biophys. Bioeng. 5, 63 (1976).

    Google Scholar 

  33. A. Gedanken and M. Levy, Rev. Sci. Instrum. 48, 1661 (1977).

    ADS  Google Scholar 

  34. W. C. Johnson, Jr, Annu. Rev. Phys. Chem. 29, 93 (1978).

    ADS  Google Scholar 

  35. P. A. Snyder, Photochem. Photobiol. 44, 237 (1986).

    Google Scholar 

  36. E. Krausz and G. Cohen, Rev. Sci. Instrum. 48, 1506 (1977).

    ADS  Google Scholar 

  37. A. Gedanken, in Photophysics and Photochemistry in the Vacuum Ultraviolet, edited by S. P. McGlynn et al. (Reidel, Dordrecht, 1985), p. 765.

    Google Scholar 

  38. D. E. Eastman and Y. Farge (Eds.), Handbook of Synchrotron Radiation, Vols. 1–4 (North-Holland, Amsterdam, 1983–1991)

    Google Scholar 

  39. C. Kunz (Ed.), Synchrotron Radiation, Techniques and Applications (Springer, Berlin, 1979)

    Google Scholar 

  40. C. R. A. Catlo-w and G. N. Greaves (Eds.), Application of Synchrotron Radiation (Blackie, Glasgow, 1990).

    Google Scholar 

  41. P. A. Snyder and E. M. Rowe, Nuci Instrum. Methods 172, 345 (1980).

    ADS  Google Scholar 

  42. P. A. Snyder, Nucl. Instrum. Methods 222, 363 (1984).

    Google Scholar 

  43. E.S. Stevens, in Handbook on Synchrotron Radiation, Vol. 4, edited by S. Ebashi, M. Koch, and E. Rubenstein (Elsevier, Amsterdam, 1991).

    Google Scholar 

  44. J. Hormes, A. Klein, W. Krebs, W. Laaser, and J. Schiller, Nucl. Instrum. Methods 208, 849 (1983).

    Google Scholar 

  45. J. C. Sutherland, E. J. Desmond, and P. Z. Takacs, Nucl. Instrum. Methods 172, 195 (1980)

    Google Scholar 

  46. J. C. Sutherland, P. C. Keck, K. P. Griffin, and P. Z. Takacs, Nucl. Instrum. Methods 195, 375 (1982).

    ADS  Google Scholar 

  47. M. A. Wickramaaratchi, E. T. Premuzic, M. Lin, and P. A. Snyder, J. Chromatogr. 390, 413 (1987).

    Google Scholar 

  48. J. Schwinger, Phys. Rev. 75, 1912 (1949).

    MathSciNet  ADS  MATH  Google Scholar 

  49. P, Joos Phys. Rev. Lett. 4, 558 (1960).

    ADS  Google Scholar 

  50. U. Heinzmann, J. Phys. B 13, 4353 (1980)

    ADS  Google Scholar 

  51. U. Heinzmann, B. Osterheld, and F. Schäfers, Nucl. Instrum. Methods 195, 395 (1982).

    ADS  Google Scholar 

  52. A. Eyers, C. Heckenkamp, F. Schäfers, G. Schönhense, and U. Heinzmann, Nucl. Instrum. Methods 208, 303 (1983).

    Google Scholar 

  53. C. Heckenkamp, F. Schäfers, G. Schönhense, and U. Heinzmann, Phys. Rev. Lett. 52, 421 (1984).

    ADS  Google Scholar 

  54. J. Schiller and J. Hormes, Nucl. Instrum. Methods A246, 772 (1986).

    ADS  Google Scholar 

  55. A. E. Hansen and T. D. Bouman, Adv. Chem. Phys. XLIV, 545 (1980).

    Google Scholar 

  56. M. Carnell, S. D. Peyerimhoff, A. Breest, K. H. Gödderz, P. Ochmann, and J. Hormes, Chem. Phys. Lett. 180, 477(1991).

    ADS  Google Scholar 

  57. W. Moffitt and A. Moscowitz, J. Chem. Phys. 30, 648 (1959).

    ADS  Google Scholar 

  58. G. Snatzke, Chem. Unserer Zeit 16, 160 (1982).

    Google Scholar 

  59. G. Snatzke, in Chirality From Weak Bosons to the α -Helix, edited by R. Janoschek (Springer-Verlag, Berlin, 1991), p. 59.

    Google Scholar 

  60. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  61. E. U. Condon, W. Altar, and H. Eyring, J. Chem. Phys. 5, 753 (1937).

    ADS  Google Scholar 

  62. W. Kuhn, Trans. Faraday Soc. 26, 293 (1930).

    Google Scholar 

  63. S. F. Boys, Proc. R. Soc. London Ser. A 144, 655 (1934).

    ADS  MATH  Google Scholar 

  64. J. G. Kirkwood, J. Chem. Phys. 5, 479 (1937).

    ADS  Google Scholar 

  65. E. G. Höhn and O. E. Weigang, Jr, J. Chem. Phys. 48, 1127(1968).

    ADS  Google Scholar 

  66. A. Rauk, Origins of Optical Activity in Nature, edited by D. C. Walker (Elsevier, Amsterdam, 1979), p. 193.

    Google Scholar 

  67. W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi, J. Am. Chem. Soc. 83, 4013 (1961).

    Google Scholar 

  68. O. E. Weigang, Jr, and E. G. Höhn, J. Am. Chem. Soc. 88, 3673 (1966).

    Google Scholar 

  69. A. Rodger and P. M. Rodger, J. Am. Chem. Soc. 110, 2361 (1988).

    Google Scholar 

  70. O. E. Weigang, Jr, J. Am. Chem. Soc. 101, 1965 (1979).

    Google Scholar 

  71. H. Lagier, Diplom-Thesis, Bonn University, BONN-IR-86-12, Bonn, 1986.

    Google Scholar 

  72. N. Harada and K. Nakanishi, Acc. Chem. Res. 5, 257 (1972).

    Google Scholar 

  73. K. P. Gross and O. Schnepp, Chem. Phys. Lett 36, 531 (1975).

    ADS  Google Scholar 

  74. A. Gedanken, K. Hintzer, and V. Schurig, J. Chem. Soc. Chem. Commun. 1984, 1695 (1984).

    Google Scholar 

  75. A. Gedanken and V. Schurig, J. Phys. Chem. 91, 1324 (1987).

    Google Scholar 

  76. J. Schiller, H. Lagier, A. Klein, J. Hormes, F. Vogtle, A. Aigner, and R. Thomessen, Phys. Sen 35, 463 (1987).

    ADS  Google Scholar 

  77. W. C. Johnson, Jr, in Landolt-Bornstein Series VII, edited by W. Saenger (Springer, Berlin, 1989).

    Google Scholar 

  78. K. H. Johnson, D. M. Gray, and J. C. Sutherland, Nucleic Acids Res. 19, 2275 (1991).

    Google Scholar 

  79. W. C. Johnson, Jr, Adv. Carbohydr. Chem. Biochem. 45, 73 (1987).

    Google Scholar 

  80. E. S. Stevens, Photochem. Photobiol. 44, 287 (1986).

    Google Scholar 

  81. W. C Johnson, Jr, Proteins, Structure, Function, and Genetics 7, 205 (1990).

    Google Scholar 

  82. K. Gödder Diplom-Thesis, Bonn University, BONN-IR-90-17, Bonn, 1990.

    Google Scholar 

  83. A. Ralk J O. Jarvie, H. Ichimura, and J. M. Barriel, J. Am. Chem. Soc. 97, 5656 (1975).

    Google Scholar 

  84. G. V. Shustov, S. V. Varlamov, I I. Chervin, A. E. Aliev, R. G. Kostyanovsky, D. Kim, and A. Rauk, J. Am. Chem. Soc. III, 4210 (1989).

    Google Scholar 

  85. P. Faupel and V. Buss, MakromoL Chem. Theory Simul. 1, 311 (1992).

    Google Scholar 

  86. S. Wenzel and V. Buss, J. Phys. Org. Chem. 5, 748 (1992).

    Google Scholar 

  87. V. Buss, V. Haas, and U. Wingen, Z. Naturforsck 44b, 333 (1989).

    Google Scholar 

  88. U. Wingen, L. Simon, M. Klein, and V. Buss, Angew. Chem. Int. Ed. Engl. 24, 761 (1985).

    Google Scholar 

  89. V. Haas and V. Buss, J. Chem. Soc. Chem. Commun. 18, 1320 (1991).

    Google Scholar 

  90. F. Vögtle, K.-J. Przybilla, A. Mannschreck, N. Pustet, P. Büllesbach, H. Reuter, and H. Puff, Chem. Bet. 121, 823 (1988).

    Google Scholar 

  91. K.-J. Przybilla and F. Vogtle, Chem. Ber. 122, 347 (1989).

    Google Scholar 

  92. N. Greenfield and G. D. Fasman, Biochemistty 8, 4108 (1969).

    Google Scholar 

  93. V. P. Saxena and D. B. Wetlaufer, Proc. Natl. Acad. Sci. USA 68, 969 (1971).

    ADS  Google Scholar 

  94. Y.-H. Chen, J. T. Yang, and H. M. Martinez, Biochemistry 11, 4120 (1972).

    Google Scholar 

  95. P. Manavalan and W. C. Johnson, Jr, Suppl J. Biosci. 8, 141 (1985).

    Google Scholar 

  96. J. P. Hennessey, Jr, and W. C. Johnson, Jr, Biochemistty 20, 1085 (1981); Anal. Chem. 125, 177 (1982).

    Google Scholar 

  97. W. C. Johnson, Jr, Annu. Rev. Biophys. Biophys. Chem. 17, 145 (1988).

    Google Scholar 

  98. J. C. Sutherland, B. Lin, J. Mugavero, J. Trunk, M. Tomasz, R. Santella, L. Marky, and K. J. Breslauer, Photochem. Photobiol. 44, 295 (1986).

    Google Scholar 

  99. A. Toumadje, S. W. Alcorn, and W. C. Johnson, Jr, Anal. Biochem. in press.

    Google Scholar 

  100. B. Ritchie, Phys. Rev. A 12, 567 (1975); 13, 1411 (1976); 14, 359 (1976); 14, 1396 (1976).

    ADS  Google Scholar 

  101. N. A. Cherepkov, Chem. Phys. Lett. 87, 344 (1982)

    ADS  Google Scholar 

  102. N. A. Cherepkov and V. V. Kuznetsov, J. Phys. B 20, L 159(1987)

    ADS  Google Scholar 

  103. Z. Phys. D7, 271 (1987)

    Google Scholar 

  104. J. Phys. B 22, L 405 (1989)

    Google Scholar 

  105. J. Chem. Phys. 95, 3046 (1991).

    Google Scholar 

  106. R. L. Dubs, S. N. Dixit, and V. McKoy, Phys. Rev. Lett. 54, 1249 (1985)

    ADS  Google Scholar 

  107. Phys. Rev. B 32, 8389(1985)

    Google Scholar 

  108. J. Chem. Phys. 85, 656 (1986)

    Google Scholar 

  109. J. Chem. Phys. 85, 6267 (1986)

    Google Scholar 

  110. R. L. Dubs, V. McKoy, and S. N. Dixit, J. Chem. Phys. 88, 968 (1988).

    ADS  Google Scholar 

  111. N. Chandra, Phys. Rev. A 39, 2256 (1989).

    ADS  Google Scholar 

  112. S. M. Goldberg, C. S. Fadley, and S. Kono, J. Electron Spectrosc. Relat. Phenom. 21, 285 (1981).

    Google Scholar 

  113. S. Stolte, K. K. Chakravorty, R. B. Bernstein, and D. H. Parker, Chem. Phys. 71, 353 (1982)

    Google Scholar 

  114. S. Stolte, Ber: Bunsenges. Phys. Chem. 86, 413 (1982).

    Google Scholar 

  115. S. Kaesdorf, G. Schönhense, and U. Heinzmann, Phys. Rev. Lett. 54, 885 (1985).

    ADS  Google Scholar 

  116. J. R. Appling, M. G. White, T. M. Orlando, and S. L. Anderson, J. Chem. Phys. 85, 6803 (1986).

    ADS  Google Scholar 

  117. J. R. Appling, M. G. White, R. L. Dubs, S. N. Dixit, and V. Mckoy, J. Chem. Phys. 87, 6927 (1987).

    ADS  Google Scholar 

  118. J. W. Winniczek, R. L. Dubs, J. R. Appling, V. McKoy, and M. G. White, J. Chem. Phys. 90, 949 (1989)

    ADS  Google Scholar 

  119. R. L. Dubs, S. N. Dixit, and V. McKoy, J. Chem. Phys. 86, 5886 (1987).

    ADS  Google Scholar 

  120. F. Schäfers, W. Peatman, A. Eyers, C. Heckenkamp, G. Schönhense, and U. Heinzmann, Rev. Sci. Instrum. 57, 1032(1986).

    ADS  Google Scholar 

  121. G. Schönhense, Appl. Phys. A41, 39 (1986).

    ADS  Google Scholar 

  122. K. Jost, J. Phys. E 12, 1001, 1006(1979).

    MathSciNet  ADS  Google Scholar 

  123. J. Kessler, Comments At. Mol. Phys. 10, 47 (1981)

    Google Scholar 

  124. Polarized Electrons, 2nd ed. (Springer, Berlin, 1985)

    Google Scholar 

  125. F. Schafers, G. Schönhense, and U. Heinzmann, Phys. Rev. A 28, 802 (1983)

    ADS  Google Scholar 

  126. C. Heckenkamp, F. Schäfers, G. Schönhense, and U. Heinzmann, Phys. Rev. A 32, 1252 (1985).

    ADS  Google Scholar 

  127. G. Schönhense, Phys. Scr. T31, 255 (1990)

    ADS  Google Scholar 

  128. Vacuum 41, 506 (1990).

    Google Scholar 

  129. G. Schönhense, C. Westphal, J. Bansmann, and M. Getzlaff, Europhy Lett. 17, 727 (1992).

    ADS  Google Scholar 

  130. G. Schönhense, C. Westphal, J. Bansmann, M. Getzlaff, J. Noffke, and L. Fritsche, Surf. Sci. 251/252, 132(1991).

    Google Scholar 

  131. N. A. Cherepkov and G. Schönhense, in Synchrotron Radiation and Dynamic Phenomena, edited by A. Beswick (American Institute of Physics, New York, 1991), p. 69 and Europhys. Lett. 24, 79 (1993).

    Google Scholar 

  132. R. Parzynski, Acta Phys. Pol. A 57, 49 (1980).

    Google Scholar 

  133. L. E. Cuellar, C. S. Feigerle, H. S. Carman, Jr, and R. N. Compton, Phys. Rev. A 43, 6437 (1991).

    ADS  Google Scholar 

  134. J. Berakdar and H. Klar, Phys. Rev. Lett. 69, 1175 (1992)

    ADS  Google Scholar 

  135. J. Berekdar, H. Klar, A. Huetz, and P. Selles, J. Phys. B 26, 1463 (1993).

    ADS  Google Scholar 

  136. E. W. Plummer and W. Eberhard, Adv. Chem. Phys. 49, 533 (1982).

    Google Scholar 

  137. H.-J. Freund and M. Neumann, Appl Phys. A 47, 3 (1988).

    ADS  Google Scholar 

  138. G. Blyholder, J. Phys. Chem. 68, 2772 (1964); J. Vac. Sci. Technol. 11, 865 (1974).

    Google Scholar 

  139. V. McKoy, R. L. Dubs, and M. Braunstein, private communication (1989) and Ref. 122.

    Google Scholar 

  140. C. Westphal, J. Bansmann, M. Getzlaff, and G. Schonhense, Phys. Rev. Lett. 63, 151 (1989).

    ADS  Google Scholar 

  141. C. Westphal, J. Bansmann, M. Getzlaff, G. Schönhense, N. A. Cherepkov, M. Braunstein, V. McKoy, and R. L. Dubs, Surf Sci. 253, 205 (1991).

    ADS  Google Scholar 

  142. C. Westphal, Ph.D. Thesis, University of Bielefeld (1991).

    Google Scholar 

  143. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Elmsford, NY, 1984).

    Google Scholar 

  144. C. Westphal, F. Fegel, J. Bausmann, M. Getzlaff, G. Schonhense, J. A. Stephens and V. McKoy, Phys. Rev. B 50, 17534 (1994).

    ADS  Google Scholar 

  145. F. P. Netzer and J. U. Mack, J. Cherri. Phys. 79, 1017 (1983).

    ADS  Google Scholar 

  146. H.-P. Steinrück, C. Schneider, P. A. Heimann, T. Pache, E. Umbach, and D. Menzel, Surf. Sci. 208, 136 (1989).

    ADS  Google Scholar 

  147. J. U. Mack, E. Bertel, and F. R Netzer, Surf Sci. 159, 265 (1985).

    ADS  Google Scholar 

  148. C. Westphal, J. Bansmann, M. Getzlaff, and G. Schonhense, J. Electron Spectrosc. Relat. Phenom. 52, 613 (1990).

    Google Scholar 

  149. M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964).

    MATH  Google Scholar 

  150. See, e.g., A. Puschmann, J. Haase, M. D. Crapper, C. E. Riley, and D. P. Woodruff, Phys. Rev. Lett. 54, 2250 (1985).

    ADS  Google Scholar 

  151. R. Courths, B. Cord, H. Wern, H. Saalfeld, and S. Hüfner, Solid State Commun. 63, 619 (1987).

    ADS  Google Scholar 

  152. C. Westphal, M. Getzlaff, J. Bansmann, and G. Schönhense, (to be published).

    Google Scholar 

  153. H. Petersen, Opt Commun. 40, 402 (1982) and Nucl. Instrum. Methods A 246, 260 (1986)

    ADS  Google Scholar 

  154. G. Kaindl, M. Domke, C. Laubschat, E. Weschke, and C. XUE, Rev. Sci. Instrum. 63, 1234 (1992).

    ADS  Google Scholar 

  155. H. Petersen, F. Schäfers, and M. Willmann, BESSY annual report p. 425 (1990)

    Google Scholar 

  156. H. Petersen, M. Willmann, F. Schäfers, and W. Gudat, Nucl Instr. and Methods A 333, 129 (1993).

    Google Scholar 

  157. H.-J. Freund and M. Neumann, Appl Phys. A 47, 3 (1988).

    ADS  Google Scholar 

  158. J. Bansmann, C. Ostertag, G. Schonhense, F. Fegel, C. Westphal, M. Getzlaff, F. Schafers, and H. Petersen, Phys. Rev. B 46, 13496 (1992).

    ADS  Google Scholar 

  159. V. McKoy, M. Braunstein, and R. L. Dubs, private communication (1992).

    Google Scholar 

  160. A. A. Pavlychev and N. A. Cherepkov, private communication (1992).

    Google Scholar 

  161. Theoretical calculation for the C Is- and O Is-orbitals of CO from T. Porwol and H. J. Freund, University of Bochum, Germany (unpublished).

    Google Scholar 

  162. See A. A. Pavlychev, A. S. Vinograd, V. N. Akimov, and S. V. Nekipelov, Phys. Scr. 42, 160 (1990).

    ADS  Google Scholar 

  163. C. T. Chen, Rev. Sci. Instrum. 63, 1229 (1992).

    ADS  Google Scholar 

  164. F. Allen and C. Bustamante (Eds.), Applications of Circularly Polarized Radiation Using Synchrotron and Ordinary Sources (Plenum Press, New York, 1985).

    Google Scholar 

  165. J. M. J. Madey, J. Appl Phys. 42, 1906 (1971).

    ADS  Google Scholar 

  166. H. Onuki, N. Saito, and T. Saito, Appl Phys. Lett. 52, 173 (1988).

    ADS  Google Scholar 

  167. H. Kitamura, Synchrotron Radiation News 5(1), 14 (1992).

    Google Scholar 

  168. M. B. Moiseev, M. N. Nikitin, and N. I. Fedosov, Sov. Phys. J. 21, 332 (1978).

    Google Scholar 

  169. K.-J. Kim, Nucl Instrum. Methods 219, 425 (1984).

    Google Scholar 

  170. K.-J. Kim, in Ref. 143, p. 21.

    Google Scholar 

  171. J. Bahrdt, A. Gaupp, W. Gudat, M. Mast, K. Molter, W. B. Peatman, M. Scheer, T. Schroeter, and C. Wang, Synchrotron Radiation News 5(2), 12 (1992).

    Google Scholar 

  172. J. Bahrdt, A. Gaupp, W. Gudat, M. Mast, K. Molter, W. B. Peatman, M. Scheer, T. Schroeter, and C. Wang, Rev. Sci. Instrum. 63, 339 (1992).

    ADS  Google Scholar 

  173. C. Bustamante, M. F. Maestre, and I. Tinoco, Jr, J. Chem. Phys. 73, 4273 (1980).

    ADS  Google Scholar 

  174. C. Bustamante, M. E Maestre, and I. Tinoco, Jr, J. Chem. Phys. 73, 6046 (1980).

    ADS  Google Scholar 

  175. M. Mundschau, E. Bauer, and W. Swiech, Surf Sci. 203, 412 (1988).

    ADS  Google Scholar 

  176. K. Hall, K. S. Wells, D. Keller, B. Samori, M. F. Maestre, I. Tinoco, Jr, and C. Bustamante, in Ref. 143, p. 77.

    Google Scholar 

  177. C. Nicolini, in Ref. 143, p. 93.

    Google Scholar 

  178. M. F. Maestre, C. Bustamante, P. A. Snyder, E. Rowe, and R. Hansen, in Production and Analysis of Polarized X-rays, SPIE Proc. 1548, in press, 1992.

    Google Scholar 

  179. G. van der Laan, B. T. Thole, G. A. Sawatzky, J. B. Goedkoop, J. C. Fuggle, J.-M. Esteva, R. C. Karnatak, J. P. Remeika, and H. A. Dabkowska, Phys. Rev. B 34, 6529 (1986).

    ADS  Google Scholar 

  180. G. Schotz, Phys. Rev. Lett. 58, 737 (1987).

    ADS  Google Scholar 

  181. A. Balerna, E. Bernferi, and S. Mobilio (Eds.), 2nd European Conference on Progress in X-ray Synchrotron Radiation Research, Societa Italiana di Fisica, Conference Proceedings, Vol. 25, 1990, Chap. 3 and 5.

    Google Scholar 

  182. C. Gauthier, I. Ascone, J. Goulon, R. Cortes, J.-M. Barbe, and R. Guilard, in Ref. 160, p. 395.

    Google Scholar 

  183. T. Jo, Synchrotron Radiation News 5(1), 21 (1992).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Schönhense, G., Hormes, J. (1996). Photoionization of Oriented Systems and Circular Dichroism. In: Becker, U., Shirley, D.A. (eds) VUV and Soft X-Ray Photoionization. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0315-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0315-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7993-5

  • Online ISBN: 978-1-4613-0315-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics