Skip to main content

A globalization strategy for Interior Point Methods for Mixed Complementarity Problems

  • Chapter
High Performance Algorithms and Software for Nonlinear Optimization

Part of the book series: Applied Optimization ((APOP,volume 82))

  • 407 Accesses

Abstract

Recent works have shown that a wide class of Interior Point methods employing linesearch along the Newton step may manifest a weakness of convergence. In order to alleviate such drawback, in this paper we introduce a new globalization strategy. It performs backtracking along a piecewise linear path which can be easily constructed. The proposed strategy is embedded into an Interior Point method. Computational results show that the resulting procedure is remarkably successful, shows fast local rate of convergence and low computational cost.

This research was supported by MURST, Rome,Italy, through “Cofinanziamenti Programmi di Ricerca Scientifica di Interesse Nazionale” and by GNCS, Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Bellavia, (1998) “An Inexact Interior Point method”, J. Optimization Theory Appl., Vol. 96, pp. 109–121.

    Article  MathSciNet  MATH  Google Scholar 

  2. H.Y. Benson, D. F. Shanno, R. J. Vanderbei, (2000) “Interior Point Methods for Nonconvex nonlinear programming: Jamming and comparative numerical testing”, Technical report ORFE-00–02, Operation Research and Financial Engineering, Princeton University.

    Google Scholar 

  3. R.H. Byrd, M.E. Hribar, J. Nocedal, (1999) “An interior point algorithm for large-scale nonlinear programming”, SIAM J. Optim., Vol. 9, pp. 877–900.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. H. Byrd, M. Marazzi, J. Nocedal, (2001), “ On the convergence of Newton Iterations to Non-Stationary Points”, Report OTC 2001/01, Optimization Technology Center.

    Google Scholar 

  5. M. D. Canon, C. D. Cullum, Jr., E. Polak, (1970) Theory of optimal control and mathematical programming, McGraw-Hill, New York, NY.

    Google Scholar 

  6. J.E. Dennis, R.B. Schnabel, (1983), Numerical methods for unconstrained optimization and nonlinear equations, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  7. C. Durazzi, (2000) “On the Newton Interior-Point method for nonlinear programming problems”, J. Optimization Theory Appl., Vol. 104, pp. 73–90.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, Y. Zhang, (1996), “On the Formulation and Theory of the Newton Interior-Point Method for Nonlinear Programming”, J. Optimization Theory Appl., Vol. 89, pp. 507–541.

    Article  MathSciNet  MATH  Google Scholar 

  9. M.C. Ferris, C. Kanzow, (2002), “Complementarity and related problems: a survey”, in P.M. Pardalos and M.G.C. Resende (eds.) Handbook of Applied Optimization, pp. 514–530, Oxford University Press, New York, NY.

    Google Scholar 

  10. M.C. Ferris, J.S. Pang, (1997) “Engineering and economic applications of cornplementarity problems” SIAM Review,Vol. 39, pp. 669–713.

    Article  MathSciNet  MATH  Google Scholar 

  11. C.A. Floudas et al., (1999) Handbook of test problems in local and global optimization, Nonconvex Optimization and its Applications, 33, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  12. D. M. Gay, M. L. Overton, M. H. Wright, (1998) “A primal-dual interior method for nonconvex nonlinear programming”, in Y. Yuan Ed., Advances in Nonlinear Programming, pp. 31–56, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  13. M. Kojima, T. Noma, A. Yoshise, (1994), “Global convergence in InfeasibleInterior-Point algorithms”, Math. Progr., Vol. 65, pp. 43–72.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Marazzi, J. Nocedal, (2001), “Feasibility Control in nonlinear optimization”, in Devore, A. Iserles, and E. Suli Eds., Foundations of Computational Mathematics, London Mathematical Society Lecture Note Series 284, Cambridge University Press.

    Google Scholar 

  15. J. Nocedal, S.J. Wright,(1999) Numerical Optimization,Springer Series in Operations Research, Springer-Verlag, New York, NY.

    Book  MATH  Google Scholar 

  16. E.M. Simantiraky, D.F. Shanno, (1997), “An infeasible-interior-point method for linear complementarity problems”, Siam J. Optim., Vol.7, pp.620–640.

    Article  MathSciNet  Google Scholar 

  17. E.M. Simantiraky, D.F. Shanno, (1995) “Computing Equilibria of Oligopolistic Pricing Models”, Rutcor Research Report RRR.41–95.

    Google Scholar 

  18. L. T. Watson, (1979), “Solving the nonlinear complementarity problem by a homotopy method”, Siam J. Control and Optim., Vol. 17, pp.36–46.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Yamashita, H. Yabe, T. Tanabe, (1997) “A globally and superlinearly convergent primal-dual interior point trust region method for large scale constrained optimization”, Technical report, Mathematical System Ic.

    Google Scholar 

  20. R. J. Vanderbei, D. F. Shanno, (1999) “An Interior Point algorithm for Non-convex nonlinear programming”, Comput. Optim. Appl.,Vol. 13, pp. 231–252, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Wachter, L.T. Biegler, (2000) “Failure of global convergence for a class of Interior Point methods for nonlinear programming”, Math. Program., Series A, Vol. 88, pp. 565–574.

    Article  MathSciNet  Google Scholar 

  22. S. J. Wright, D. Ralph, (1996), “A Superlinear Infeasible-Interior Point Algorithm for Monotone Complementarity Problems”, Math. Operation Res.,Vol. 21, pp. 815–838.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. J. Wright, (1997), Primal-Dual Interior-Point Methods, Siam Publications, Philadelphia, PA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers B.V.

About this chapter

Cite this chapter

Bellavia, S., Morini, B. (2003). A globalization strategy for Interior Point Methods for Mixed Complementarity Problems. In: Di Pillo, G., Murli, A. (eds) High Performance Algorithms and Software for Nonlinear Optimization. Applied Optimization, vol 82. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0241-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0241-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7956-0

  • Online ISBN: 978-1-4613-0241-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics