Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 82))

Abstract

We examine efficient computer implementation of one method of deterministic global optimization, the cutting angle method. In this method the objective function is approximated from below with piecewise linear auxiliary functions. The sequence of global minima of these auxiliary functions converges to the global minimum of the objective function. Computing the minima of the auxiliary function is a combinatorial problem, and we show that it can be effectively parallelized. We discuss the improvements made to the serial implementation of the cutting angle method, and ways of distributing computations across multiple processors on parallel and cluster computers.

This research was supported by the Victorian Partnership for Advanced Computing, Australia

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Andramonov, A. Rubinov and B. Glover, Cutting angle methods in global optimization, Applied Mathematics Letters, vol. 12 (1999), pp. 95–100.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Bagirov, Derivative-free methods for unconstrained nonsmooth optimization and its numerical analysis, Journal Investigacao Operational, vol. 19 (1999), pp. 75–93.

    Google Scholar 

  3. A. Bagirov and A. Rubinov, Global minimization of increasing positively homogeneous function over the unit simplex, Annals of Operations Research, vol. 98 (2000), pp. 171–187.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bagirov and A. Rubinov, Modified versions of the cutting angle method, in N. Hadjisavvas and P. M. Pardalos, eds., Convex analysis and global optimization, Kluwer Academic Publishers, Dordrecht, 2001, pp. 245–268.

    Chapter  Google Scholar 

  5. A. M. Bagirov and A. M. Rubinov, Cutting angle method and a local search, Journal of Global Optimization, to appear.

    Google Scholar 

  6. L. M. Batten and G. Beliakov, Fast algorithm for the cutting angle method of global optimization, Journal of Global Optimization, to appear.

    Google Scholar 

  7. I.M. Bomze and E. de Klerk, Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. Journal of Global Optimization, to appear.

    Google Scholar 

  8. T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to algorithms, MIT Press, McGraw-Hill, Cambridge, Mass. New York, 1990.

    MATH  Google Scholar 

  9. C. A. Floudas, Deterministic global optimization: theory,methods,and applications, Kluwer Academic Publishers, Dordrecht, 2000.

    Google Scholar 

  10. R. Horst and H. Tuy, Global optimization: deterministic approaches, Springer-Verlag, Berlin; New York, 1993.

    Google Scholar 

  11. R. Horst and P. M. Pardalos, Handbook of global optimization, Kluwer Academic Publishers, Dordrecht; Boston, 1995.

    MATH  Google Scholar 

  12. J. L. Kiepeis, M. G. Ierapetritou and C. A. Floudas, Protein Folding and Peptide Docking - a Molecular Modeling and Global Optimization Approach, Computers and Chemical Engineering, vol. 22 (1998), pp. S 3–S 10.

    Google Scholar 

  13. F. T. Leighton, Introduction to parallel algorithms and architectures: arrays,trees,hypercubes, M. Kaufmann Publishers, San Mateo, Calif., 1992.

    Google Scholar 

  14. X. Liu, Finding global minima with a computable filled function, Journal of Global Optimization vol. 19(2001), pp. 151–161.

    Article  MATH  Google Scholar 

  15. H. S. Morse,Practical parallel computing, AP Professional, Boston, 1994.

    Google Scholar 

  16. R. V. Pappu, R. K. Hart and J. W. Ponder, Analysis and application of potential energy smoothing and search methods for global optimization, Journal of Physical Chemistry B, vol. 102 (1998), pp. 9725–9742.

    Article  Google Scholar 

  17. P. M. Pardalos and C. A. Floudas, Optimization in computational chemistry and molecular biology: local and global approaches, Kluwer Academic Publishers, Boston, 2000.

    MATH  Google Scholar 

  18. J. Pintér, Global optimization in action: continuous and Lipschitz optimization–algorithms, implementations, and applications, Kluwer Academic Publishers, Dordrecht; Boston, 1996.

    MATH  Google Scholar 

  19. A. M. Rubinov, Abstract convexity and global optimization,Kluwer Academic Publishers, Dordrecht; Boston, 2000.

    MATH  Google Scholar 

  20. T. Takaoka, Theory of Trinomial Heaps, in D.-Z. Du, P. Eades, V. Estivill-Castro, X. Lin and A. Sharma, eds., Computing and Combinatorics, Springer, Sydney, 2000, pp. 362–372.

    Chapter  Google Scholar 

  21. A. Törn and A. Zhilinskas, Global optimization, Springer-Verlag, Berlin; New York, 1989.

    MATH  Google Scholar 

  22. B. Wilkinson and C. M. Allen, Parallel programming: techniques and applications using networked workstations and parallel computers, Prentice Hall, Upper Saddle River, N.J., 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers B.V.

About this chapter

Cite this chapter

Beliakov, G., Ting, K.M., Murshed, M., Rubinov, A., Bertoli, M. (2003). Efficient Serial and Parallel Implementations of the Cutting Angle Method. In: Di Pillo, G., Murli, A. (eds) High Performance Algorithms and Software for Nonlinear Optimization. Applied Optimization, vol 82. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0241-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0241-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7956-0

  • Online ISBN: 978-1-4613-0241-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics