Skip to main content

Smoothing Techniques for the Solution of Finite and Semi-Infinite Min-Max-Min Problems

  • Chapter
High Performance Algorithms and Software for Nonlinear Optimization

Part of the book series: Applied Optimization ((APOP,volume 82))

Abstract

Semi-infinite optimization problems with max-min cost or constraint functions, such as P: minx∈IR n maxy∈Y min z∈Z ø (x, y, z), occur in several important areas of engineering design, as well as in economics. These problems are particularly difficult, partly because of the concatenation of max and min operators, and partly because functions of the form max y∈Y minz∈Z ø (x, y, z) may fail to have directional derivatives even when ø (x, y, z) is smooth. As a result, the literature dealing rigorously with their solution is very small. First we develop a first-order optimality function θ(.) for such problems. Then we show that one can use an adaptive smoothing technique to construct a sequence of finite min-max problems, of the form P N : minx∈IR nmaxy∈YN ω N (x, y), which, together with their optimality functions θ N (.) are consistent approximations to the the original pair (P, θ). This fact opens up the possibility of solving minmax-min problems using a master algorithm that calls min-max algorithms as subroutines.

Articlenote

This work was supported by the USA National Science foundation under the grant ECS-9900985

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.W. Sandler, P. C. Liu, and H. Tromp, A nonlinear programming approach to optimal design centering, tolerancing, and tuning, IEEE Transactions on Circuits and Systems, Vol. CAS-23 (1976), 155–165.

    Article  Google Scholar 

  2. D. Barbara, H. Garcia-Molina, and A. Spauster, Increasing availability under mutual exclusion constraints with dynamic vote reassignment. ACM Transactions on Computer Systems, Vol. 7, No. 4 (1989), 394–426.

    Article  Google Scholar 

  3. D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York, 1982.

    MATH  Google Scholar 

  4. T. Chen and M. K. H. Fan, On convex formulation of of the floor-plan area minimization problem, in Proc. International Symposium on Physical Design, (1998) 124–128.

    Google Scholar 

  5. C. K. Cheng, X. Deng, Y. Z. Liao, and S. Z. Yao, Symbolic layout compaction under conditional design rules, IEEE Transactions on Computer Aided-Design, Vol. 11, No. 4 (1992), 4775–486.

    Google Scholar 

  6. F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, N.Y. (1983).

    MATH  Google Scholar 

  7. J. Gaal, L. Gefferth, K. Geher, E. Halasz, and T. Tron, New algorithms and computer programs for design centering, tolerancing and tuning under environmental influence, Proceedings of the 1981 European Conference on Circuit Theory and Design, The Hague, Netherlands (25–28 Aug. 1981). Delft, Netherlands, Delft University Press (1981), 696–703.

    Google Scholar 

  8. A. Giva, F. Dicesare, and M. Silva, Petri net supervisors for generalized mutual exclusion constraints, Proceeding of the 12th Triennial World Congress of the International Federation of Automatic Control, Vol. 4. Applications II, Sydney, NSW, Australia, 18–23 July 1993, 379–82.

    Google Scholar 

  9. D. Hochbaum, Complexity and algorithms for logical constraints with applications to VLSI layout, compaction and clocking, Studies in Locational Analysis, ISOLDE VI, Proceedings (June 1993), 159–164.

    Google Scholar 

  10. K. Karplus, Exclusion constraints for digital MOS circuits: a new set of electrical design rules, em Proceedings of the IEEE International Conference on Computer-Aided Design: ICCAD-85. Digest of Technical Papers (Cat. No. 85CH2233–5), Santa Clara, CA, USA, 18–21 Nov. 1985.

    Google Scholar 

  11. A. A. Kassim and B. V. K. Vijaya Kumar, Path planning for autonomous robots using neural networks, Journal of Intelligent Systems, Vol. 7, No. 1–2, (1997) 33–55.

    Article  Google Scholar 

  12. C. Kirjner and E. Polak, On the conversion of optimization problems with maxmin constraints to standard optimization problems, SIAM J. Optimization, Vol. 8, No. 4 (1998), 887–915.

    Article  MATH  Google Scholar 

  13. S. H. Koozekanani and R. B. McGhee, Occupancy problems with pairwise exclusion constraints-an aspect of gait enumeration, Journal of Cybernetics, Vol. 2, No. 4 (1972), 14–26.

    Article  MathSciNet  Google Scholar 

  14. P. C. Liu, V.W. Chung, and K. C. Li, Circuit design with post-fabrication tuning, Proceedings of the 35th Midwest Symposium on Circuits and Systems, Washing-ton, DC, USA (Aug. 1992), 344–347.

    Chapter  Google Scholar 

  15. R. W. Longman, V. H. Schulz, and H. G. Bock, Path planning for satellite mounted robots, in Dynamics and Control of Structures in Space III, C. L. Kirk, and D. J. Inman, eds, Comput. Mech. Publications (1996), Southampton, UK, 17–28.

    Google Scholar 

  16. D. Q. Mayne and A. Voreadis, Algorithms for the tolerancing and tuning problem, Proceedings of the 1981 European Conference on Circuit Theory and Design, The Hague, Netherlands (25–28 Aug. 1981). Delft, Netherlands, Delft University Press (1981), 753–757.

    Google Scholar 

  17. D. Q. Mayne and E. Polak, Algorithms for Optimization Problems with Exclusion Constraints, J. Optimization Theory and Applications, Vol. 51, No. 3, (1986), 453--474.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. S. Moh, T. S. Chang, and S. L. Hakimi, Globally optimal floorplanning for a layout problem, IEEE Trans. on Circuits and Systems - I, Fundamental Theory and Applications, Vol. 43, (1996), 713–720.

    Article  MathSciNet  Google Scholar 

  19. O. Pironneau and E. Polak, On the rate of convergence of certain methods of centers, Mathematical Programming, Vol. 2, No. 2, pp. 230–258, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Polak, On the use of consistent approximations in the solution of semi-infinite optimization and optimal control problems, Mathematical Programming, Series B, Vol. 82, No.2, pp. 385–414, 1993.

    Article  MathSciNet  Google Scholar 

  21. E. Polak, Optimization: Algorithms and Consistent Approximations, Springer-Verlag, New York (1997).

    MATH  Google Scholar 

  22. E. Polak and A. Sangiovanni Vincentelli, Theoretical and computational aspects of the optimal design centering, tolerancing and tuning problem, IEEE Transactions on Circuits and Systems, Vol. CAS-26, No. 9 (1979), 795–813.

    Article  Google Scholar 

  23. B. N. Pshenichnyi, and Yu. M. Danilin, Numerical Methods in Extremal Problems (Chislennye Metody y Ekstremal’nykh Zadachakh),Nauka, Moscow, 1975.

    Google Scholar 

  24. D. Ralph and E. Polak, A first-order algorithm for semi-infinite min-max-min problems, SIAM J. Optimization, in press.

    Google Scholar 

  25. J. A. Reeds and L. A. Shepp, Optimal paths for a car that goes both forwards and backwards, Pacific Journal of Mathematics, Vol. 145, No. 2 (1990).

    Google Scholar 

  26. R. T. Rockafellar and R. J-B. Wets, Variational Analysis, Springer-Verlag, New York, 1997.

    Google Scholar 

  27. H. Scheel and S. Scholtes, Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity, Mathematics of Operations Research, 25, 1–22.

    Google Scholar 

  28. S. Scholtes, Introduction to piecewise differentiable equations,Habilitation Thesis, Preprint No. 53/1994, Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe (76128 Karlsruhe, 1994).

    Google Scholar 

  29. A. Tits, On the optimal design centering, tolerancing and tuning problem, Journal of Optimization Theory and Its Applications, Vol. 45, No. 3 (1985), 487–494.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Voreadis and D. Q. Mayne, “Cut Map Algorithm for Design Problems with Parameter Tolerances and tuning,” IEEE Transactions on Circuits and Systems, Vol. CAS-29, No. 5, pp. 288–298, 1982.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers B.V.

About this chapter

Cite this chapter

Polak, E. (2003). Smoothing Techniques for the Solution of Finite and Semi-Infinite Min-Max-Min Problems. In: Di Pillo, G., Murli, A. (eds) High Performance Algorithms and Software for Nonlinear Optimization. Applied Optimization, vol 82. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0241-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0241-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7956-0

  • Online ISBN: 978-1-4613-0241-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics