Skip to main content

PENNON

A Generalized Augmented Lagrangian Method for Semidefinite Programming

  • Chapter
High Performance Algorithms and Software for Nonlinear Optimization

Part of the book series: Applied Optimization ((APOP,volume 82))

Abstract

This article describes a generalization of the PBM method by Ben-Tal and Zibulevsky to convex semidefinite programming problems. The algorithm used is a generalized version of the Augmented Lagrangian method. We present details of this algorithm as implemented in a new code PENNON. The code can also solve second-order conic programming (SOCP) problems, as well as problems with a mixture of SDP, SOCP and NLP constraints. Results of extensive numerical tests and comparison with other SDP codes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Ben-Tal, F. Jarre, M. Kočvara, A. Nemirovski, and J. Zowe. Optimal design of trusses under a nonconvex global buckling constraint. Optimization and Engineering, 1:189–213, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ben-Tal, M. Kočvara, A. Nemirovski, and J. Zowe. Free material design via semidefinite programming. The multi-load case with contact conditions. SIAM J. Optimization,9:813–832, 1997.

    Article  Google Scholar 

  3. A. Ben-Tal and M. Zibulevsky. Penalty/barrier multiplier methods for convex programming problems. SIAM J. Optimization, 7:347–366, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Borchers. CSDP, a C library for semidefinite programming. Op-timization Methods and Software,11:613–623, 1999. Available at http://www.nmt.edu/~borchers/

    Article  MathSciNet  Google Scholar 

  5. B. Borchers. SDPLIB 1.2, a library of semidefinite programming test problems. Optimization Methods and Software, 11 & 12:683–690, 1999. Available at http://www.nmt.edu/~borchers/

    Article  MathSciNet  Google Scholar 

  6. K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sparsity in primal-dual interior-point method for semidefinite programming. Mathematical Programming, 79:235–253, 1997.

    MathSciNet  MATH  Google Scholar 

  7. H.R.E.M. Hörnlein, M. Kočvara, and R. Werner. Material optimization: Bridging the gap between conceptual and preliminary design. Aerospace Science and Technology, 2001. In print.

    Google Scholar 

  8. F. Jarre. An interior method for nonconvex semidefinite programs. Optimization and Engineering, 1:347–372, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Kočvara. On the modelling and solving of the truss design problem with global stability constraints. Struct. Multidisc. Optimization, 2001. In print.

    Google Scholar 

  10. H. Mittelmann. Benchmarks for optimization software. Available at http://plato.la.asu.edu/bench.html

  11. E. Ng and B. W. Peyton. Block sparse cholesky algorithms on advanced uniprocessor computers. SIAM J. Scientific Computing,14:1034–1056, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Pataki and S. Schieta. The DIMACS library of mixed semidefinite-quadratic-linear problems. Available at http://dimacs.rutgers.edu/challenges/seventh/instances

  13. M. Stingl. Konvexe semidefinite programmierung. Diploma Thesis, Institute of Applied Mathematics, University of Erlangen, 1999.

    Google Scholar 

  14. J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11 & 12:625–653, 1999. Available at http://fewcal.kub.nl/sturm/.

    Article  MathSciNet  Google Scholar 

  15. R.H. Tütütcü, K.C. Toh, and M.J. Todd. SDPT3 — A MATLAB software package for semidefinite-quadratic-linear programming, Version 3.0. Available at http://www.orie.cornell.edu/~miketodd/todd.html School of Operations Research and Industrial Engineering, Cornell University, 2001.

    Google Scholar 

  16. J. Zowe, M. Kočvara, and M. Bendsøe. Free material optimization via mathematical programming. Mathematical Programming, Series B, 79:445–466, 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers B.V.

About this chapter

Cite this chapter

Kočvara, M., Stingl, M. (2003). PENNON. In: Di Pillo, G., Murli, A. (eds) High Performance Algorithms and Software for Nonlinear Optimization. Applied Optimization, vol 82. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0241-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0241-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7956-0

  • Online ISBN: 978-1-4613-0241-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics