Skip to main content

Planar-CG Methods and Matrix Tridiagonalization in Large Scale Unconstrained Optimization

  • Chapter
High Performance Algorithms and Software for Nonlinear Optimization

Part of the book series: Applied Optimization ((APOP,volume 82))

Abstract

In this paper we aim at carrying out and describing some issues for real eigenvalue computation via iterative methods. More specifically we work out new techniques for iteratively developing specific tridiagonalizations of a symmetric and indefinite matrix AR n × n, by means of suitable Krylov subspace algorithms defined in [16], [26]. These schemes represent extensions of the well known Conjugate Gradient (CG) method to the indefinite case. We briefly recall these algorithms and we suggest a comparison with the method in [22], along with a discussion on the practical application of the proposed results for eigenvalue computation. Furthermore, we focus on motivating the fruitful use of these tridiagonalizations for ensuring the convergence to second order points, within an optimization framework.

This work was supported by MIUR, National Research Program Algorithms for Complex Systems Optimization

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.S.Ammar, L.Reichel, D.C.Sorensen (1992), “An implementation of a divide and conquer algorithm for the unitary eigenproblem”, ACM Transactions on Mathematical Software,vol. 18, pp. 292 – 307.

    Article  MATH  Google Scholar 

  2. W.Barth, R.S.Martin, J.H.Wilkinson (1967), “Calculation of the eigenvalues of a Symmetric Tridiagonal Matrix by the Method of Bisection”, Numerische Mathematik, vol. 9, pp. 379–404.

    Article  MathSciNet  Google Scholar 

  3. C.H.Bischof, M.Marques, X.Sun (1993), “Parallel Bandreduction and Tridiagonalization”, Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing, R.Sincovec, Ed., pp.389–390, SIAM.

    Google Scholar 

  4. C.H.Bischof, X.Sun (1992), “A Framework for Symmetric Band Reduction and Tridiagonalization”, Preprint MCS-P298–0392, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439–4801.

    Google Scholar 

  5. C.H.Bischof, X.Sun (1995), “On tridiagonalizing and Diagonalizing Symmetric Matrices with Repeated Eigenvalues”, Argonne Preprint MCS-P545–1095, PRISM Working Note #25, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439–4801.

    Google Scholar 

  6. H.Bowdler, R.S.Martin, C.Reinsch, J.H.Wilkinson (1968), “The QR and QL Algorithms for Symmetric Matrices”, Numerische Mathematik, vol. 11, pp. 293–306.

    Article  MathSciNet  MATH  Google Scholar 

  7. W.W.Bradbury, R.Fletcher (1966), “New iterative methods for solutions of the eigenproblem”, Numerische Mathematik, vol. 9, pp. 259–267.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.J.M.Cuppen (1981), “A divide and conquer method for the symmetric tridiagonal eigenproblem”, Numer. Math., vol. 36, pp. 177–195.

    Article  MathSciNet  MATH  Google Scholar 

  9. R.S.Dembo, T.Steihaug (1983), “Truncated-Newton Algorithms for large scale Matrix Methods”, Mathematical Programming, vol. 26, pp. 190–212.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.W.Demmel (1997), Applied Numerical Linear Algebra, SIAM, Philadelphia.

    MATH  Google Scholar 

  11. J.Demmel, K.Veselic ’ (1992), “Jacobi’s method is more accurate than QR”, SIAM J. Matrix Anal. Appl.,vol. 13, pp. 1204–1246 (LAPACK Working Note 15).

    Article  MathSciNet  MATH  Google Scholar 

  12. A.Edelman, T.Arias, S.T.Smith (1994), “Curvature in Conjugate Gradient Eigenvalue Computation with Applications to Materials and Chemistry Calculations”, Proceedings of the SIAM Applied Linear Algebra Conference, J.G.Lewis, ed., SIAM, Philadelphia, pp. 233–238.

    Google Scholar 

  13. A.Edelman, T.Arias, S.T.Smith (to appear), “The geometry of algorithms with orthogonality constraints”, SIAM J. Matrix Anal. Appl.

    Google Scholar 

  14. A.Edelman, S.T.Smith (1996), “On Conjugate Gradient-like methods for eigen-like problems”, BIT, vol. 36:1, pp. 494–508.

    Article  MathSciNet  MATH  Google Scholar 

  15. G.Fasano (2002), “On Some Properties of Planar-CG algorithms for Large Scale Unconstrained Optimization - Part A” T.R. 03–02, Dipartimento di Informatica e Sistemistica ‘A.Ruberti’, Università “La Sapienza” Roma, Italy.

    Google Scholar 

  16. G.Fasano (2001), “A new CG-based method for the solution of large scale indefinite linear systems”, T.R. 08–01, Dipartimento di Informatica e Sistemistica ‘A.Ruberti’, Università “La Sapienza” Roma, Italy.

    Google Scholar 

  17. W.N.Gansterer, D.F.Kvasnicka, C.W.Ueberhuber (1998), “Numerical Experiments with Symmetric Eigensolvers”, AURORA TR1998–19, University of Technology, Vienna.

    Google Scholar 

  18. G.H.Golub, C.F.Van Loan (1989), Matrix computations - 3rd edition, The John Hopkins Press, Baltimore.

    Google Scholar 

  19. N.I.M.Gould, S.Lucidi, M.Roma, Ph.L.Toint (1999), “Solving the trust-region subproblem using the Lanczos method”, SIAM Journal on Optimization vol. 9, pp. 504–525.

    Article  MathSciNet  MATH  Google Scholar 

  20. N.I.M.Gould, S.Lucidi, M.Roma, Ph.L.Toint (2000), “Exploiting Negative Curvature Directions in Linesearch Methods for Unconstrained Optimization”, Optimization Methods and Software vol. 14, pp. 75–98.

    Article  MathSciNet  MATH  Google Scholar 

  21. M.R.Hestenes (1980), Conjugate Direction Methods in Optimization, Springer Verlag, New York Heidelberg Berlin.

    MATH  Google Scholar 

  22. C.Lanczos (1950), “An Iterative Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators”, Journal of Research of the National Bureau of Standards vol. 45, Research Paper 2133.

    Google Scholar 

  23. B.Lang (1999), “Out-of-Core Solution of Large Symmetric Eigenproblems”, Preprint RWTH-CS-SC-99–03, Aachen University of Technology, Institute for Scientific Computing.

    Google Scholar 

  24. S.Lucidi, M.Roma (1997), “Numerical experiences with new truncated Newton methods in large scale unconstrained optimization”, Computational Optimization and Applications, vol. 7, pp. 71–87.

    Article  MathSciNet  MATH  Google Scholar 

  25. S.Lucidi, F.Rochetich, M.Roma (1999), “Curvilinear stabilization techniques for Truncated Newton methods in large scale unconstrained Optimization”, SIAM Journal on Optimization,vol. 8, pp. 916–939.

    Article  MathSciNet  Google Scholar 

  26. D.G.Luenberger (1969), “Hyperbolic pairs in the Method of Conjugate Gradients”, SIAM J. Appl. Math.,vol. 17, pp. 1263–1267.

    Article  MathSciNet  MATH  Google Scholar 

  27. M.Mongeau, M.Torki (1999), “Computing eigenelements of real symmetric matrices via optimization”, T.R. MIP 99 – 54.

    Google Scholar 

  28. J.J.More, D.C.Sorensen (1979), “On the use of directions of negative curvature in a modified Newton method”, Mathematical Programming,vol. 16, pp. 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  29. C.C.Paige, M.A.Saunders (1975), “Solution of sparse indefinite systems of linear equations”, SIAM J. on Numerical Analysis,vol. 12, pp. 617 – 629.

    Article  MathSciNet  MATH  Google Scholar 

  30. B.Parlett (1980), The symmetric eigenvalue problem, Prentice-Hall series in Computational Mathematics, Englewood Cliffs.

    MATH  Google Scholar 

  31. B.Parlett (1974), “Generalized Rayleigh Methods with Applications to Finding Eigenvalues of Large Matrices”, Lin. Alg. and its Applic.,vol. 4, pp. 353–368.

    Google Scholar 

  32. J.Stoer (1983), Mathematical Programming, The State of the Art,A.Bachem, M.Grotschel, B.Korte eds., Springer-Verlag, Berlin.

    Google Scholar 

  33. H.Van Der Vorst (1996), “Subspace Iteration for Eigenproblems” CWI Quarterly, vol. 9, pp. 151–160.

    MathSciNet  MATH  Google Scholar 

  34. J.H.Wilkinson (1965), The Algebraic Eigenvalue Problem, Oxford: Oxford University (Clarendon).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers B.V.

About this chapter

Cite this chapter

Fasano, G. (2003). Planar-CG Methods and Matrix Tridiagonalization in Large Scale Unconstrained Optimization. In: Di Pillo, G., Murli, A. (eds) High Performance Algorithms and Software for Nonlinear Optimization. Applied Optimization, vol 82. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0241-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0241-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7956-0

  • Online ISBN: 978-1-4613-0241-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics