Skip to main content

Part of the book series: Cooperative Systems ((COSY,volume 3))

Abstract

Volume holographic imaging permits the reconstruction of remote target shapes using either a single imaging sensor or several sensors cooperatively. We review the properties of image formation using a new type of imager that employs a volume hologram recorded with plane wave reference beam, and explain the mechanism by which depth selectivity is attained. We also describe a new cooperative imaging method using the pseudo—inverse to reconcile measurements of the same target taken simultaneously by several VHI sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Barbastathis, M. Balberg, and D. J. Brady. Confocal microscopy with a volume holographic filter. Opt. Lett., 24 (12): 811–813, 1999.

    Article  Google Scholar 

  2. G. Barbastathis and D. J. Brady. Multidimensional tomographic imaging using volume holography. Proc. IEEE, 87 (12): 2098–2120, 1999.

    Article  Google Scholar 

  3. G. Barbastathis and A. Sinha. N—ocular volume holographic imaging. In S. Butenko, R. Murphey, and P. M. Pardalos, editors, Cooperative Control: Models, Applications and Algorithms, pages 1–21. Kluwer Academic Publishers, 2003.

    Google Scholar 

  4. M. Bertero and P. Boccacci. Introduction to Inverse Problems in Imaging. Institute of Physics, 1998.

    Book  MATH  Google Scholar 

  5. M. Born and E. Wolf. Principles of Optics. Pergamon Press, 7th edition, 1998.

    Google Scholar 

  6. H. Coufal, D. Psaltis, and G. Sincerbox, editors. Holographic Data Storage. Springer-Verlag, 2000.

    MATH  Google Scholar 

  7. O. Faugeras and Q.-T. Luong. The Geometry of Multiple Images. MIT Press, 2001.

    MATH  Google Scholar 

  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto. Optical coherence tomography. Science, 254 (5035): 1178–1181, 1991.

    Article  Google Scholar 

  9. K. Itoh and Y. Ohtsuka. Fourier-transform spectral imaging: retrieval of source information from three dimensional spatial coherence. J. Opt. Soc., 3:94–100, 1986.

    Article  Google Scholar 

  10. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey. Holographic data storage in three-dimensional media. Appl. Opt., 5 (8): 1303–1311, 1966.

    Article  Google Scholar 

  11. D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, Jr., and R. B. Brady. Visible cone-beam tomography with a lensless interferometric camera. Science, 284 (5423): 2164–2166, 1999.

    Article  Google Scholar 

  12. D. Man. Vision. W. H. Freeman & Co., 1982.

    Google Scholar 

  13. M. Minsky. Microscopy apparatus. US Patent 3,013,467, granted 1961.

    Google Scholar 

  14. J. Rosen and A. Yariv. Three-dimensional imaging of random radiation sources. Opt. Lett., 21 (14): 1011–1013, 1996.

    Article  Google Scholar 

  15. A. Sinha and G. Barbastathis. Volume holographic telescope. Opt. Lett., 27: 1690–1692, 2002.

    Article  Google Scholar 

  16. A. Sinha, W. Sun, T. Shih, and G. Barbastathis. Volume holographic imaging in the transmission geometry. Applied Optics. Submitted.

    Google Scholar 

  17. A. Stein and G. Barbastathis. Axial imaging necessitates loss of lateral shift invariance. Appl. Opt., 41: 6055–6061, 2002.

    Article  Google Scholar 

  18. T. Wilson, editor. Confocal Microscopy. Academic Press, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Barbastathis, G., Sinha, A. (2004). Progress in Cooperative Volume Holographic Imaging. In: Butenko, S., Murphey, R., Pardalos, P.M. (eds) Recent Developments in Cooperative Control and Optimization. Cooperative Systems, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0219-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0219-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7947-8

  • Online ISBN: 978-1-4613-0219-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics