Skip to main content

Part of the book series: Cooperative Systems ((COSY,volume 3))

Abstract

Team game models appear in a number of interesting applications in network and economic systems. In this chapter, three conceptual algorithms of the fictitious play type are derived for their solution and proven convergent. They are based on Frank-Wolfe linearization and cyclic decomposition. Inaccurate subproblem solutions and overall ∈-optimality are made possible by utilizing the concept of Hearn’s gap function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. P. Bennet. Global tree optimization: A non-greedy decision tree algorithm. Computing Science and Statistics, 26: 156–160, 1994.

    Google Scholar 

  2. K. P. Bennet and O. L. Mangasarian. Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1: 23–34, 1992.

    Article  Google Scholar 

  3. D. P. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Englewood Cliffs, NJ, 1992.

    MATH  Google Scholar 

  4. D. Bienstock and O. Raskina. Analysis of the flow deviation method for the maximum concurrent flow problem. Technical Report CORC 200002, Columbia University, New York, NY 10027, 2000.

    Google Scholar 

  5. M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of the Frank-Wolfe algorithm. SIAM Journal on Control, 6: 509–516, 1968.

    Article  MATH  Google Scholar 

  6. M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly, 3: 95–110, 1956.

    Article  MathSciNet  Google Scholar 

  7. D. W. Hearn. The gap function of a convex program. Operations Research Letters, 1: 67–71, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. W. Hearn, S. Lawphongpanich, and J. A. Ventura. Restricted simplicial decomposition: computation and extensions. Mathematical Programming Study, 3: 99–118, 1987.

    MathSciNet  Google Scholar 

  9. D. Kinderlehrer and G. Stampacchia. An Introduction to Variational Inequalities and their Applications. Academic Press, New York, 1980.

    MATH  Google Scholar 

  10. S. Lawphongpanich and D. W. Ream. Simplicial decomposition of the asymmetric traffic assignment problem. Transportation Research, 18B: 123–133, 1984.

    Google Scholar 

  11. D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading, Mass., second edition, 1984.

    MATH  Google Scholar 

  12. A. Migdalas. A regularization of the Frank-Wolfe algorithm and unification of certain nonlinear programming methods. Mathematical Programming, 65: 331–345, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Nguyen. An algorithm for the traffic assignment problem. Transportation Science, 8: 203–216, 1974.

    Article  Google Scholar 

  14. P. M. Pardalos, G. Xue, and P. D. Panagiotopoulos. Parallel algorithm for global optimization. In A. Ferreira and P. M. Pardalos, editors, Solving Irregular Problems in Parallel: State of the Art. Springer-verlag, Berlin, 1995.

    Google Scholar 

  15. E. R. Petersen. A primal-dual traffic assignment algorithm. Management Science, 22: 87–95, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Serra and W. Weintraub. Convergence of decomposition algorithm for traffic assignment problem. Annals of Discrete Mathematics, 11: 313–318, 1981.

    MathSciNet  MATH  Google Scholar 

  17. N. N. Vorob’ev. Game Theory. Lectures for Economists and System Sientists. Springer-Verlag, New York, 1977. Translated from the 1974 Soviet Edition by S. Kotz.

    Google Scholar 

  18. W. I. Zangwill and C. B. Garcia. Pathways to Solutions, Fixed Points and Equlibria. Prentice-Hall, Englewood Cliffs, NJ, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Migdalas, A. (2004). Cyclic Linearization and Decomposition of Team Game Models. In: Butenko, S., Murphey, R., Pardalos, P.M. (eds) Recent Developments in Cooperative Control and Optimization. Cooperative Systems, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0219-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0219-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7947-8

  • Online ISBN: 978-1-4613-0219-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics