Skip to main content

A Hybrid Projected Gradient-Evolutionary Search Algorithm for Capacitated Multi-Source Multiuavs Scheduling with Time Windows

  • Chapter
Recent Developments in Cooperative Control and Optimization

Part of the book series: Cooperative Systems ((COSY,volume 3))

Abstract

The objective of this effort is to develop a hybrid evolutionary-gradient based technique to overcome the combinatorial complexity when solving large scale mixed integer nonlinear optimization problems. The basic idea relies on combining genetic algorithms (GA) and gradient projection method to exploit their complementary strengths. The effectiveness of these strategies are illustrated in the area of capacitated multi-source multi-vehicle scheduling with time windows.

Corresponding Author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Badeau, M. Gendreau, F. Guertin, J. Y. Potvin, and E. D. Taillard. A Parallel Tabu Search Heuristic for the Vehicle Routing Problem with Time Windows. Transportation Research-C, 5: 109–122, 1997.

    Article  Google Scholar 

  2. E. G. Davydov and I. Kh. Sigal. Application of the penalty function method in integer programming problems. Engineering Cybernetics, 10: 21–24, 1972.

    MathSciNet  Google Scholar 

  3. M. Fisher. Optimal solution of vehicle routing problems minimum k-trees. Operations Research, 37: 319–328, 1994.

    Google Scholar 

  4. R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, NY, 1987.

    MATH  Google Scholar 

  5. R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer approximation. Mathematical Programming 66, pages 327–349, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Fletcher and S. Leyffer. Numerical experience with lower bounds for MIQP branch-and-bound. SIAM Journal on Optimization, 8: 604–616, 1995.

    Article  MathSciNet  Google Scholar 

  7. L. M. Gambardella, E. Taillard, and G. Agazzi. MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. Technical Report IDSIA-06–99, IDSIA, Lugano, Switzerland, 1999.

    Google Scholar 

  8. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading, MA, 1989.

    MATH  Google Scholar 

  9. I. E. Grossman and V. Jain. Algorithms for hybrid MILP/CP models for class of optimization problems. INFORMS Journal on Computing, 13: 258–276, 2001.

    Article  MathSciNet  Google Scholar 

  10. A. Homaifar, S. Guan, and G. Liepins. Schema analysis of a new approach to the traveling salesman problem by genetic algorithms. Journal of Complex Systems, 6: 533–552, 1992.

    MathSciNet  MATH  Google Scholar 

  11. H. Jula, M. Dessouky, P. Ioannou, and A. Chassiakos. Container movement by trucks in metropolitan networks: Modeling and optimization. Technical report, University of Southern California, 2001.

    Google Scholar 

  12. P. Kilby, P. Prosser, and P. Shaw. Guided local search for the vehicle routing problem. In S. Voss, S. Martello, I. H. Osman, and C. Roucairol, editors, Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization, pages 473–486. Kluwer Academic Publishers, 1999.

    Chapter  Google Scholar 

  13. N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis. K-path cuts for the vehicle routing problem with time windows. Technical report, Technical University of Denmark, 1997.

    Google Scholar 

  14. J. Larsen. Speeding up the solution process for the Vehicle Routing Problem with Time Windows using structural information. Technical report, Informatics and Mathematical Modelling, Technical University of Denmark, 2002.

    Google Scholar 

  15. H.-L. Li. An approximate method for local optima for nonlinear mixed integer programming problems. Computers and Operations Research, 19: 435–444, 1992.

    Article  MATH  Google Scholar 

  16. D. G. Luenberger. Linear and Nonlinear Programming. John Wiley & Sons, New York, second edition, 1999.

    Google Scholar 

  17. MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows. http://www.idsia.ch?luca/macsvrptw/solutions/welcome.htm. Accessed August 2003.

  18. G. L. Nemhauser and L. A. Wolsey. Integer and Combinational Optimization. Addison-Wesley, 1989.

    Google Scholar 

  19. Y. Rochat and D. Taillard. Probabilistic diversification and intensification in local search for vehicle routing. Journal of Heuristics, 1: 147–167, 1995.

    Article  MATH  Google Scholar 

  20. R. Salomon. Volutionary algorithms and gradient search: Similarities and differences. IEEE Transactions on Evolutionary Computation, 2: 45–55, 1998.

    Article  Google Scholar 

  21. P. Shaw. Using constraint programming and local search methods to solve vehicle routing problems. In Proceedings of the Fourth International Conference on Principles and Practice of Constraint Programming, 1998.

    Google Scholar 

  22. D. Taillard, L. M. Gambardella, M. Gendreau, and J. Y. Potvin. Adaptive Memory Programming: A Unified View of Meta-Heuristics. European Journal of Operational Research, 135: 1–16, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Voudouris. Guided Local Search. PhD thesis, University of Essex, UK, 1997.

    Google Scholar 

  24. K. Zhu. A new genetic algorithm for VRPTW. In International Conference on Artificial Intelligence, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ahmadzadeh, A., Sayyar-Roudsari, B., Homaifar, A. (2004). A Hybrid Projected Gradient-Evolutionary Search Algorithm for Capacitated Multi-Source Multiuavs Scheduling with Time Windows. In: Butenko, S., Murphey, R., Pardalos, P.M. (eds) Recent Developments in Cooperative Control and Optimization. Cooperative Systems, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0219-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0219-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7947-8

  • Online ISBN: 978-1-4613-0219-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics