Skip to main content

Bioassay as a monitoring tool

  • Conference paper
Residue Reviews

Part of the book series: Residue Reviews ((RECT,volume 76))

Abstract

The application of technology to agriculture during the twentieth century has undoubtedly contributed to a vast increase in agricultural productivity and as a consequence an increase in the world’s population. This, in turn, places even greater demand on improved scientific agricultural practice. One of the factors of that technology is the introduction of chemotherapeutic agents: chemicals for the control of insects, plant disease, weed management, plant growth regulation, rodent control, etc., and as well for soil improvement (fertilizers, amendments, etc.).1

Presented in part at the April 1979 US-ROC Cooperative Science Program seminar on “Environmental Problems Associated with Pesticide Usage in the Intensive Agricultural System,” Taipei, Taiwan, Republic of China, as sponsored by the National Science Foundation (U.S.A.) and the National Science Council (R.O.C.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Addison, D. A., and C. E. Bardsley: Chorella vulgaris assay of soil herbicides. Weed Sci. 16, 427 (1968).

    CAS  Google Scholar 

  • Anderson, B. G.: Toxicity of DDT to daphnia. Science 102, 539 (1945).

    PubMed  CAS  Google Scholar 

  • Ashton, F. M., and A. S. Crofts: Mode of action of herbicides. New York: WileyInterscience (1973).

    Google Scholar 

  • ASTM Publication: Water quality parameters. Philadelphia: ASTM STP 573 (1975a).

    Google Scholar 

  • ASTM Publication: Water pollution assessment—Automatic sampling and measurement. Philadel- phia: ASTM STP 582 (1975b).

    Google Scholar 

  • ASTM Publication: Biological methods in the assessment of water quality. Philadelphia: ASTM STP 528 (1973).

    Google Scholar 

  • Atkins, C. A., and Y. T. Chan: Study of soil algae. VI. Bioassay of atrazine and the prediction of its toxicity in soils using an algae growth method. Plant and Soil 3, 432 (1967).

    Google Scholar 

  • Audus, L. J.: Plan growth substances. New York: Interscience (1965).

    Google Scholar 

  • Bann, J. M., T. J. Decino, N. W. Earle, and Y. P. Sun: The fate of aldrin and dieldrin in the animal body. J. Agr. Food Chem. 4, 937 (1956).

    CAS  Google Scholar 

  • Barkai-Golan, R., and F. S. Lattar: The effect of captan on rot-causing fungi in vitro. Isr. J. Agr. Res. 12, 131 (1962).

    CAS  Google Scholar 

  • Bates, A. N., D. M. Spencer, and R. L. Wain: Investigations on fungicides. V. The fungicidal properties of 2-methyl 4,6 di-nitrophenol and some of its esters. Ann. Applied Biol. 50, 21 (1962).

    CAS  Google Scholar 

  • Beroza, M.: Current usage and some recent developments with insect attractans and repellents in the USDA. In M. Beroza (ed.): Chemicals controlling insect behavior, pp. 145–163. New York: Academic Press (1970).

    Google Scholar 

  • Bewley, J. D., and M. Black: Physiology and biochemistry of seeds. New York: Springer-Verlag (1978).

    Google Scholar 

  • Busvine, J. R.: A critical review of the techniques for testing insecticides. 2nd Ed. London: Commonwealth Agricultural Bureaux (1971).

    Google Scholar 

  • Casida, J. E.: Sulfoxidation of thiocarbamate herbicides and metabolism of thiocarbamate sulfoxides in living mice and liver enzyme systems. Pest. Biochem. Physiol. 5, 1 (1975).

    CAS  Google Scholar 

  • Casida, J. E., R. A. Gray, and H. Tilles: Thiocarbamate sulfoxides: potent, selective and biodegradable herbicides. Science 184, 573 (1974).

    PubMed  CAS  Google Scholar 

  • Corbett, J. R.: The biochemical mode of action of pesticides. London: Academic Press (1974).

    Google Scholar 

  • Chevron Chemical Co.: Internal Publication.

    Google Scholar 

  • Cox, H. W., and G. D. Boardman: Growth response of a blue-green algae to 2,4-D and 2,4,5-T. Nat. Conf. Environ. Eng. Spec. Cord., p. 166 (1978).

    Google Scholar 

  • Da Silva, J. F., R. O. Fadayomi, and G. F. Warren: Cotyledon disc bioassay for certain herbicides. Weed Sci. 24, 250 (1976).

    Google Scholar 

  • Dewey, J. E.: Utility of bioassay in the determination of pesticide residues. J. Agr. Food Chem. 6, 274 (1958).

    CAS  Google Scholar 

  • Dickson, T. L., J. Cairns, Jr., and R. J. Livingston (ed.): Biological data in water pollution assessment: Quantitative and statistical analysis. Philadelphia: ASTM STP 652 (1977).

    Google Scholar 

  • Eberle, D. O., and H. R. Gerber: Comparative studies of instrumental and bioassay methods for the analysis of herbicide residues. Archives Environ. Contain. Toxicol. 4, 101 (1976).

    CAS  Google Scholar 

  • Edwards, C. A., S. D. Beck, and E. P. Lichtenstein: Bioassay of aldrin and lindane in soil. J. Econ. Entomol. 51, 380 (1957).

    Google Scholar 

  • Environmental Protection Agency: Proposed guidelines. Fed. Reg. 43 (132), pp. 29734 thru 29737 (1978).

    Google Scholar 

  • Environmental Protection Agency: Manual of biological testing methods for pesticides and devices. EPA Office of Pesticide Programs, Washington, D. C. (1973).

    Google Scholar 

  • Essiel, Y., and G. G. Warren: A simplified method for determining phytotoxicity, leaching and adsorption of herbicides in soil. Weeds, 15, 115 (1967).

    Google Scholar 

  • Eto, M.: Organophosphorus pesticides: Organic and biological chemistry. Cleveland: CRC Press (1974).

    Google Scholar 

  • Frick, E. L.: Methods of reducing variability in the results of glass slide spore germination assays of fungitoxicity. Ann. Applied Biol. 54, 349 (1964).

    Google Scholar 

  • Gamborg, O. L.: Plant tissue culture. Nat. Res. Council Canada, Ottawa (1975).

    Google Scholar 

  • Georgopoulos, S. G., and V. E. Vomvoyanni: Differential sensitivity of duphenyl-tolerant and dupenyl-sensitive strains of fungi to chlorinated nitrobenzenes and to some duphenyl derivatives. Can. J. Bot. 43, 765 (1965).

    CAS  Google Scholar 

  • Glass, G. E. (ed.): Bioassay techniques and environmental chemistry. Ann Arbor: Ann Arbor Science Publishers (1973).

    Google Scholar 

  • Greaves, M. P., S. L. Cooper, H. A. Davies, J. A. Marsh, and G. I. Wingfield: Methods of analysis for determining the effects of herbicides on soil microorganisms and their activities. Tech. Report No. 45, Agr. Res. Council. Weed. Res. Org. Oxford, UK (1978).

    Google Scholar 

  • Gunther, F. A., and R. C. Blinn: Analysis of insecticides and acaracides. New York: Interscience (1955).

    Google Scholar 

  • Harris, C. R., and E. P. Licirrenstein: Factors affecting the volatilization of insecticidal residues in soils. J. Econ. Entomol. 54, 1038 (1961).

    Google Scholar 

  • Harris, R. L., W. F. Chamberlain, and E. D. Frazar: Horn flies and stable flies: Free-choice feeding of methoprene mineral blocks to cattle for control. J. Econ. Entomol. 63, 384 (1974).

    Google Scholar 

  • Helling, C. S., D. D. Kaufman, and C. T. Dieter: Algae bioassay detection of pesticide mobility in soils. Weed Sci. 19, 685 (1974).

    Google Scholar 

  • Honowrrz, M.: Application of bioassay techniques to herbicide investigations. Weed Res. 16, 209 (1976).

    Google Scholar 

  • Horsefall, J. G.: Fungicides and their action. Waltham, Mass.: Chronica Botanica (1945).

    Google Scholar 

  • Horsefall, J. G.: Principles of fungicidal action. Waltham, Mass.: Chronica Botanica (1956).

    Google Scholar 

  • Hoskins, W. M., and P. S. Messenger: Bioassay method: Musca. Adv. Chem. Ser. 1, 93 (1950).

    Google Scholar 

  • Inscoe, M. N., and M Beroza: Analysis of pheromones and other compounds controlling insect behavior. In G. Zweig (ed.): Analytical methods for pesticides and plant growth regulators VIII, 31 et seq. New York, London: Academic Press (1976).

    Google Scholar 

  • Justice, O. L., and L. N. Bass: Principles and practice of seed storage. Agr. Handbook No. 506, U.S. Gov’t. Printing Office, Washington, D. C. (1978).

    Google Scholar 

  • Kaufman, D. D., G. G. Still, E. D. Paulson, and S. K. Bandal: Bound and conjugated pesticide residues. Amer. Chem. Soc. Symposium Ser. 29, (1976).

    Google Scholar 

  • Kelman, A.: Sourcebook of laboratory exercises in plant pathology. San Francisco: Freeman (1967).

    Google Scholar 

  • Kocher, C, W. Rom, and J. Trebaux: Bioassay tests: Daphnia. Mitt. Schweiz. Entomol. Ges. 26, 47 (1953).

    Google Scholar 

  • Kohn, G. K.: The sulfenimide fungicides. In J. R. Plimmer (ed.): Pesticide chemistry in the 20th century. Amer. Chem. Soc. Symposium Ser. 37 (1977).

    Google Scholar 

  • Kohn, G. K.: The pesticide industry. In J. A. Kent (ed.): Riegel’s handbook of industrial chemistry, 7th Ed. New York: Van Nostrand (1974).

    Google Scholar 

  • Kratiy, B. A., and G. F. Warren: The use of three simple, rapid bioassays on forty-two herbicides. Weed Res. 11, 257 (1971).

    Google Scholar 

  • Laug, E. P., and O. G. Fitzhugh: 2,2-Bis- (p-chlorophenyl) -1,1,1-trichloroethane (DDT) in the tissues of the rat following oral ingestion for periods of six months to two years. J. Pharmacol. Exp. Therap. 87, 18 (1946).

    CAS  Google Scholar 

  • Liang, T. T., and E. P. Lichtenstein: Synergism of insecticides by herbicides: Effect of environmental factors. Science 186, 1128 (1974).

    PubMed  CAS  Google Scholar 

  • Liang, T. T., and E. P. Lichtenstein: Effect of light, temperature and pH on the degradation of azinophosmethyl. J. Econ. Entomol. 65, 315 (1972).

    PubMed  CAS  Google Scholar 

  • Lichtenstein, E. P. and J. R. Casida: Myristicin, an insecticide and synergist occurring naturally in the edifice parts of parsnips. J. Agr. Food Chem. 11, 401 (1963).

    Google Scholar 

  • Lichtenstein, E. P., T. T. Liang, and T. W. Fuhremann: A compartmentalized microcosm for studying the fate of chemicals in the environment. J. Agr. Food Chem. 26, 945 (1978).

    Google Scholar 

  • Lichtenstein, E. P., T. T. Liang, K. R. SchĂĽlz, H. K. Schnoes, and G. T. Carter: Insecticidal and synergistic components isolated from dill plants. J. Agr. Food Chem. 22, 658 (1974).

    CAS  Google Scholar 

  • Lichtenstein, E. P., T. T. Liang, T. W. Fuhremann, and K. R. Schulz: Translocation and metabolism of [14C] phorate as affected by percolating water in.a model soil-plant ecosystem. J. Agr. Food Chem. 22, 991 (1974).

    CAS  Google Scholar 

  • Lichtenstein, E. P., T. T. Liang, and B. N. Anneregg: Synergism of insecticides by herbicides. Science, 181, 847 (1973).

    PubMed  CAS  Google Scholar 

  • Lichtenstein, E. P., D. G. Moran, and C. H. Mueller: Naturally occurring insecticides in cruciferous crops. J. Agr. Food Chem. 12, 158 (1963).

    Google Scholar 

  • Lichtenstein, E. P., G. R. Myiral, and K. R. Scnulz: Absorption of insecticidal residues from contaminated soils into five carrot varieties. J. Agr. Food Chem. 13, 126 (1965).

    CAS  Google Scholar 

  • Lichtenstein, E. P., K. R. Sciiulz, T. W. Fuhremann, and T. T. Liang: Biological interaction between plasticizers and insecticides. J. Econ. Entomol. 62, 761 (1969).

    CAS  Google Scholar 

  • Lichtenstein, E. P., K. R. Sciiulz, R. F. Skrentny, and Y. Tsuxano: Toxicity and fate of insecticide residues in water. Arch. Environ. Health 12, 199 (1966).

    PubMed  CAS  Google Scholar 

  • Lichtenstein, E. P., K. R. Sciiulz: Translocation of some chlorinated hydrocarbon insecticides into the aerial parts of pea plants. J. Agr. Food Chem. 8, 452 (1960).

    CAS  Google Scholar 

  • Lichtenstein, E. P., K. R. Sciiulz, R. F. Skrentny, and P. A. Stitt: Insecticidal residues in cucumbers and alfalfa grown in Aldrin-or Heptachlor-treated soils. J. Econ. Entomol. 58, 742 (1965).

    CAS  Google Scholar 

  • Lichtenstein, E. P., K. R. Sciiulz, and G. T. Cowley: Inhibition of the conversion of Aldrin to Daldrin in soils with methylenedroxyphenyl synergists. J. Econ. Entomol. 56, 485 (1963).

    CAS  Google Scholar 

  • Lichtenstein, E. P., F. M. Strong, and D. G. Morgan: Identification of 2-phenethyl isothiocyanate as an insecticide occurring naturally in the edible parts of turnips. J. Agr. Food Chem. 10, 30 (1962).

    Google Scholar 

  • L. J. Depew, E. L. Eshbaugh, and J. P. Sleesman: Persistence of DDT, aldrin and lindane in some Midwestern soils. J. Econ. Entomol. 53, 136 (1960).

    Google Scholar 

  • Lukens, R. N.: Controlled release of foliar protectants. Devel. Ind. Microbiol. 16, 333 (1975).

    CAS  Google Scholar 

  • Lukens, R. N., and S. H. Ou: Chlorthalonil residues in field tomatoes and protection against alternaria solani. Phytopathol. 66, 1018 (1976).

    CAS  Google Scholar 

  • Lukens, R. J.: Chemistry of fungicidal action. London: Chapman & Hall (1971).

    Google Scholar 

  • Matsumura, F.: Toxicology of insecticides, p. 43. New York: Plenum Press (1975).

    Google Scholar 

  • Matsunaka, S.: Propanil hydrolysis: Inhibition in rice plants by insecticides. Science 160, 1360 (1968).

    PubMed  CAS  Google Scholar 

  • McCann, A. E., and D. R. Cullimore: Influence of pesticides on the soil algal flora. Residue Reviews 72, 1 (1979).

    CAS  Google Scholar 

  • Menn, J. J.: Comparative aspects of pesticide metabolism in plants and animals. Environ. Health Perspectives 27, 113 (1978).

    CAS  Google Scholar 

  • Menn, J. J., E. Benjamini, and W. M. Hoslans: The effects of temperature and stage of life cycle upon the toxicity and metabolism of DDT in the housefly. J. Econ. Entomol. 50, 67 (1957).

    CAS  Google Scholar 

  • Metcalf, R. L.: Organic insecticides, their chemistry and mode of action. New York: Interscience (1955).

    Google Scholar 

  • Metcalf, R. L.: A model ecosystem for the evaluation of biodegradability and ecological magnification. Outlook on Agr. 7, 55 (1972).

    Google Scholar 

  • Metcalf, R. L., and R. B. March: Further studies on the mode of action of organic thiono-phosphate insecticides. Ann. Entomol. Soc. Amer. 46, 63 (1953).

    CAS  Google Scholar 

  • Metcalf, R. L., T. R. Fuxuto, and R. B. March: Plant metabolism of dithiosystox and thimet. J. Econ. Entomol. 50, 338 (1957).

    CAS  Google Scholar 

  • Mitchell, J. E.: Bioassay of fungicide on treated seed. In A. Kelman (Chmn. Ed. Bd.): Sourcebook of laboratory exercises in plant pathology, p. 311. San Francisco: Freeman (1967).

    Google Scholar 

  • Mitchell, J. W., and G. A. Livingston: Methods of studying plant hormones and growth-regulating substances. Agr. Handbook No. 336, Agr. Res. Sew. USDA, Washington, D. C. (1968).

    Google Scholar 

  • Munnecke, D. E.: Estimation of foliar fungicide residues. In A. Kelman (Chmn. Ed. Bd.): Sourcebook of laboratory exercises in plant pathology, p. 326. San Francisco: Freeman (1967).

    Google Scholar 

  • Neely, D.: The value of in vitro fungicide tests. Ill. Nat. Hist. Survey, Biol. Notes No. 64, Urbana (1969).

    Google Scholar 

  • Nolan, K., and F. Wilcoxon: Method of bioassay for traces of parathion in plant material. Agr. Chemicals 5, 53 (1950).

    CAS  Google Scholar 

  • Noll, M., and U. Bauer: Rapid sensitive herbicide bioassay by inhibition of trichomemigration of blue-green algae. Zbl. Bakt. Hyg. 1 Abt. Orig. B 157, 178 (1973).

    CAS  Google Scholar 

  • O’biuen, M. C., and G. N. Prendeville: A rapid sensitive bioassay for the determination of paraquat and diquat in water. Weed Res. 18, 301 (1978).

    Google Scholar 

  • Pagan, C., and R. M. Hageman: Determination of DDT by bioassay. Science 112, 222 (1950).

    CAS  Google Scholar 

  • Pallos, F. M., and J. E. Casida (ed.): The chemistry and action of herbicide antidotes. New York: Academic Press (1978).

    Google Scholar 

  • Parker, C.: The importance of shoot entry in the action of herbicides applied to the soil. Weeds 14, 117 (1966).

    CAS  Google Scholar 

  • Pillay, A. R., and Y. T. Tchan: Study of soil algae. VII. Adsorption of herbicides in soil and prediction of their rate of application by algae methods. Plant and Soil 36, 571 (1972).

    CAS  Google Scholar 

  • Plant Growth Regulator Working Group: Plant growth regulator handbook, Longmont, CO: The Group (1977).

    Google Scholar 

  • Plapp, F. W., Jr.: Polychlorinated biphenyl: An environmental contaminant acts as an insecticide synergist. Environ. Entomol. 1, 580 (1972).

    Google Scholar 

  • Ready, D., and V. Q. Grant: A rapid sensitive method for determination of 2,4-D acid in aqueous solution. Bot. Gaz. 109, 39 (1947).

    CAS  Google Scholar 

  • Reid, C. P. P., and W. Hurtt: A rapid bioassay for simultaneous identification and quantitation of Picloram in aqueous solution. Weed Res. 9, 136 (1969).

    CAS  Google Scholar 

  • Riley, D., W. Wilkinson, and B. J. Tucker: In D. D. Kaufman (ed.): Bound and conjugated pesticide residues. Amer. Chem. Soc. Symposium Ser. 29 (1976).

    Google Scholar 

  • Roelof:, W. L.: Threshhold hypothesis for pheromone perception. J. Chem. Ecol. 4, 685 (1978).

    Google Scholar 

  • Saggers, D. T.: The search for new herbicides. In: Herbicide biochemistry, physiology and ecology, p. 447. New York: Academic Press (1976).

    Google Scholar 

  • Schaeffer, C. H., and W. H. Wilder: Insect development inhibitors: A practical evaluation as mosquito control agents. J. Econ. Entomol. 65, 1066 (1972).

    Google Scholar 

  • Schechter, M. S., and I. Hornstein: Chemical analysis of pesticide residues. Pest Control Res. I, 353 (1957).

    Google Scholar 

  • Schulz, K. R., E. P. Lichtenstein, T. T. Liang, and T. W. Fuhremann: Persistence and degradation of azinphosmethyl in soils, as affected by formulation and mode of application. J. Econ. Entomol. 63, 432 (1970).

    PubMed  CAS  Google Scholar 

  • Scopes, N. E. A., and E. P. Lichtenstein: The use of Folsomia fimetaria and Drosophila melanogasta as test insects for the detection of insecticide residues. J. Econ. Entomol. 60, 1539 (1967).

    PubMed  CAS  Google Scholar 

  • Shennan, J. L., and W. W. Fletcher: The growth in vitro of micro-organisms in the presence of substituted phenoxyacetic and phenoxybuyric acid. Weed Res. 5, 266 (1965).

    Google Scholar 

  • Sims, J. J., H. Mee, and D. C. Erwin: Methyl 2-benzimidazole carbamate, a fungitoxic compound isolated from cotton plants treated with methyl 1-(butylcarba-moyl)-2-benzimidazole-carbamate (benomyl). Phytopathol. 59, 1775 (1969).

    CAS  Google Scholar 

  • SRI International: Aquatic organisms procedure; 333 Ravenswood Avenue, Menlo Park, CA 94025.

    Google Scholar 

  • Sun, T. Y. T., and Y. P. Sun: Microbioassay of insecticides in milk by a feeding method. J. Econ. Entomol. 46, 927–930 (1953).

    Google Scholar 

  • Sun, Y. P.: Bioassay insects. In G. Zweig (ed.): Analytical methods for pesticides, plant growth regulators, and food additives, vol. I, p. 399. New York: Academic Press (1963).

    Google Scholar 

  • Sun, Y. P.: Bioassay of pesticide residues. Adv. Pest Control Res. I, 444 (1957).

    Google Scholar 

  • Sun, Y. P., and J. E. Pankaskie: Drosophila, a sensitive insect, for the microbioassay of insecticide residues. J. Econ. Entomol. 47, 180 (1954).

    Google Scholar 

  • Tchan, Y. T., and C. M. Chrou: Bioassay of herbicides by bioluminescence. ACTA Phytopath. Acad. Sci. Hungarica 12, 3 (1977).

    CAS  Google Scholar 

  • Tchan, Y. T., J. E. Roseby, and G. R. Funnell: A new rapid specific bioassay method for photosynthesis inhibiting herbicides. Soil Biol. Biochem. 7, 39 (1975).

    CAS  Google Scholar 

  • Terriere, L. C., and D. W. Ingalsbe: Translocation and residual action of soil insecticides. J. Econ. Entomol. 46, 751 (1953).

    Google Scholar 

  • Thompson, C. R., and G. Kats: Effects of H,S fumigation on crop and forest plants. Environ. Science and Technol. 12, 550 (1978).

    CAS  Google Scholar 

  • Torgeson, D. C. (ed.): Fungicides, an advanced treatise, vol. I et seq. New York Academic Press (1969).

    Google Scholar 

  • Truelove, B. (ed): Research methods in weed science; 2nd ed. Auburn: S. Weed Sci. Soc. (1977).

    Google Scholar 

  • Truelove, B., D. E. Davis, and L. R. Jones: A new method for detecting photosynthesis inhibitors. Weed Sci. 22, 15 (1974).

    CAS  Google Scholar 

  • Tsao, P. H.: A serial dilution endpoint method for estimating disease potentials of citrus phytophoras in soil. Phytophathol. 50, 717 (1960).

    Google Scholar 

  • Union Carbide Corporation: Aquatic environmental sciences. Sand Mill River Road 100C, Tarrytown, New York 10591.

    Google Scholar 

  • Wasserburger, H. J.: Daphnia magna as a test animal for the determination of traces of contact insecticides. Pharmazie 7, 731 (1952).

    PubMed  CAS  Google Scholar 

  • Weaver, R. J.: Plant growth substances in agriculture. San Francisco: Freeman (1972).

    Google Scholar 

  • Wright, S. J. L.: A simple agar plate method for herbicide bioassay or detection. Bull. Environ. Contam. Toxicol. 14, 65 (1975).

    PubMed  CAS  Google Scholar 

  • Zilkah, S, and J. Gressel: Cell cultures versus whole plants for measuring phytotoxicity. I. The establishment and growth of callus and suspension cultures; definition of factors affecting toxicity on calli. Plant and Cell Physiol. 18, 641 (1977).

    CAS  Google Scholar 

  • Zilkah, S, and J. Gressel: Cell cultures versus whole plants for measuring phytotoxicity. III. Correlation between phytotoxicity in cell suspension cultures, calli, and seedlings. Plant and Cell Physiol. 18, 815 (1977).

    CAS  Google Scholar 

  • Zilkah, S, P. E. Bocion, and J. Gressel: Cell cultures versus whole plants for measuring phytotoxicity. II. Correlation between phytotoxicity in seedling and calli. Plant a nd Cell Physiol. 18, 657 (1977).

    CAS  Google Scholar 

  • Zoecon Corporation: Internal data.

    Google Scholar 

  • Zweig, G., J. E. Hitt, and R. McMahon: Effect of certain quinones, diquat and diuron on Chlorella pyrenordosa chick (Emerson strein). Weed Sci. 6, 69 (1968).

    Google Scholar 

  • Zweig, G. Analytical methods for pesticides, plant growth regulators, and food additives. New York: Academic Press (1963 to present).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag New York Inc.

About this paper

Cite this paper

Kohn, G.K. (1980). Bioassay as a monitoring tool. In: Gunther, F.A., Gunther, J.D. (eds) Residue Reviews. Residue Reviews, vol 76. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-6107-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6107-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6109-4

  • Online ISBN: 978-1-4612-6107-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics