Skip to main content

Thermodynamic Procedures for Treating the Monoclinic/Triclinic Inversion as a High-Order Phase Transition in Equations of State for Binary Analbite-Sanidine Feldspars

  • Chapter
Advances in Physical Geochemistry

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 2))

Abstract

Many solid-state phase transitions (transformations) can be classified thermo-dynamically according to their order (Ehrenfest, 1933): an wth-order phase transition is characterized by discontinuities in the nth and all higher-order derivatives of G with respect to an intensive variable—e.g., pressure, temperature, or composition—while lower-order derivatives are continuous.1 Therefore, a first-order phase transition produces discontinuities in V, H, and μ i , because these properties are related to the first derivatives ∂G/∂P, ∂G/∂T, and ∂G/∂X i , respectively, and properties related to higher-order derivatives of G—e.g., C p=-T(∂2 G/∂T 2), α= (1/V)(2 G/∂PT), and β=-(1/V) (∂2 G/∂P 2)—also exhibit discontinuities. On the other hand, for a second-order phase transition, V, H, and μ i , are all continuous at the point of phase change, so Δ V and ΔH of transition are zero, but, C p α, and β are discontinuous. Finally, at a third-order phase transition all properties related to the first and second derivatives of G are continuous, and only third- and higher-order derivatives of G are discontinuous. In this chapter, transitions that fit into this classification scheme and whose order is greater than one will be referred to as high-order transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen, S. M., and Cahn, J. W. (1975) Coherent and incoherent equilibria in iron-rich iron-aluminum alloys, Ada Metall. 23, 1017–1026.

    Article  Google Scholar 

  • Allen, S. M., and Cahn, J. W. (1976a) On tricritical points resulting from the intersection of lines of higher-order transitions with spinodals, Scr. Metall. 10, 451–454.

    Article  Google Scholar 

  • Allen, S. M., and Cahn, J. W. (1976b) Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe-Al alloys, Acta Metall. 24, 425–437.

    Article  Google Scholar 

  • Blencoe, J. G. (1977) Computation of thermodynamic mixing parameters for isostructural, binary crystalline solutions using solvus experimental data, Comput. Geosci. 3, 1–18.

    Article  Google Scholar 

  • Blencoe, J. G. (1979a) The use of thermodynamic excess functions in the Nernst distribution law: discussion. Amer. Mineral. 64, 1122–1128.

    Google Scholar 

  • Blencoe, J. G. (1979b) An ion-exchange method for evaluating Δμ°1 and Δμ2 for nonisostructural binary crystalline solutions, Amer. Geophys. Union Trans. 60, 404–405.

    Google Scholar 

  • Carpenter, M. A. (1980) Mechanisms of exsolution in sodic pyroxenes, Contrib. Mineral. Petrol 71, 289–300.

    Article  Google Scholar 

  • Carpenter, M. A. (1981) A “conditional spinodal” within the peristerite miscibility gap of plagioclase feldspars, Amer. Mineral. 66, 553–560.

    Google Scholar 

  • Donnay, G., and Donnay, J. D. H. (1952) The symmetry change in the high-temperature alkali-feldspar series, Amer. J. Sci. 250A, 115–132.

    Google Scholar 

  • Ehrenfest, P. (1933) Phasenumwandlunsen im ueblichen und erweiterten sinn, klassifiziert nach den entsprechenden singularitaeten des thermodynamischen potentiales, Proc. Acad. Sci. Amsterdam 36, 153.

    Google Scholar 

  • Epstein, P. S. (1937) Textbook of Thermodynamics. Wiley, New York.

    Google Scholar 

  • Goldsmith, J. R. (1972) Cadmium dolomite and the system CdCO3-MgCO3, J. Geology 80, 611–626.

    Article  Google Scholar 

  • Goldsmith, J. R., and Heard, H. C. (1961) Subsolidus relations in the system CaCO3-MgCO3. J. Geology 69, 45–74.

    Article  Google Scholar 

  • Goldsmith, J. R., and Newton, R. C. (1974) An experimental determination of the alkali feldspar solvus, in The Feldspars, edited by W. S. MacKenzie and J. Zussman, Proc. NATO Adv. Study Inst., pp. 337–359. Manchester University Press, Manchester, England.

    Google Scholar 

  • Gordon, P. (1968) Principles of Phase Diagrams in Material Systems. McGraw-Hill, New York.

    Google Scholar 

  • Hazen, R. M. (1976) Sanidine: predicted and observed monoclinic-to-triclinic reversible transformations at high pressure, Science 194, 105–107.

    Article  Google Scholar 

  • Hazen, R. M., and Finger, L. W. (1979) Polyhedral tilting: A common type of pure displacive phase transition and its relationship to analcite at high pressure, Phase Transitions 1, 1–22.

    Article  Google Scholar 

  • Henderson, M. B. (1979) An elevated temperature X-ray study of synthetic disordered Na-K alkali feldspars, Contrib. Mineral. Petrol. 70, 71–79.

    Article  Google Scholar 

  • Henderson, C. M. and Roux, J. (1979) Inversions in subpotassic nephelines, Contrib. Mineral. Petrol. 61, 279–298.

    Article  Google Scholar 

  • Henderson, C. M. and Thompson, A. B. (1980) The low-temperature inversion in subpotassic nephelines, Amer. Mineral. 65, 970–980.

    Google Scholar 

  • Hovis, G. L. (1980) Angular relations of alkali feldspar series and the triclinic-monoclinic displacive transformation, Amer. Mineral. 65, 770–778.

    Google Scholar 

  • Hovis, G. L., and Waldbaum, D. L. (1977) A solution calorimetric investigation of K-Na mixing in a sanidine-analbite ion-exchange series, Amer. Mineral 62, 680–686.

    Google Scholar 

  • Kroll, H. (1971) Feldspäte im System KAlSi3O8-NaAlSi3O8-CaAl2Si2O8: Al, Si-Verteilung und Gitterparameter, Phasen-Transformationen und Chemismus. Dissertation, Westf Wilhems-Universität, Munster, Germany.

    Google Scholar 

  • Kroll, H., Bambauer, H. U., and Schirmer, U. (1980) The high albite-monalbite and analbite-monalbite transitions, Amer. Mineral. 65, 1192–1211.

    Google Scholar 

  • Lagache, M., and Weisbrod, A. (1977) The system: two alkali feldspars-KCl-NaCl-H2O at moderate to high temperatures and low pressures, Contrib. Mineral. Petrol. 62, 77–101.

    Article  Google Scholar 

  • Laves, F. (1952) Phase relations of the alkali feldspars. II. The stable and pseudo-stable phase relations in the alkali feldspar system, J. Geology 60, 549–574.

    Article  Google Scholar 

  • Lindsley, D. H., Davidson, P. M., and Grover, J. E. (1980) Ca-Mg pyroxenes: a solution model that permits coexisting Enss + Pig + Diss, Geol. Soc. Amer., Abstr. Progs. 12, 472.

    Google Scholar 

  • Lindsley, D. H., Grover, J. E., and Davidson, P. M. (1981) The thermodynamics of the Mg2Si2O6-CaMgSi2O6 join: a review and a new model, in Advances in Physical Geochemistry, edited by R. C. Newton, A. Navrotsky, and B. J. Wood, Vol. 1, Springer-Verlag, New York.

    Google Scholar 

  • Luth, W. C, and Fenn, P. M. (1973) Calculation of binary solvi with special reference to the sanidine-high albite solvus, Amer. Mineral. 58, 1009–1015.

    Google Scholar 

  • Luth, W. C, Martin, R. F., and Fenn, P. M. (1974) Peralkaline alkali feldspar solvi, in The Feldspars, edited by W. S. MacKenzie and J. Zussman, Proc NATO Adv. Study Inst., pp. 297–312. Manchester University Press, Manchester, England.

    Google Scholar 

  • Luth, W. C, and Querol-Suné, F. (1970) An alkali feldspar series, Contrib. Mineral. Petrol 25, 25–40.

    Article  Google Scholar 

  • Luth, W. C, and Tuttle, O. F. (1966) The alkali feldspar solvus in the system Na2O-K2O-Al2O3-SiO2-H2O, Amer. Mineral. 51, 1359–1373.

    Google Scholar 

  • MacKenzie, W. S. (1952) The effect of temperature on the symmetry of high-temperature soda-rich feldspars, Amer. J. Sci. 252A, 319–342.

    Google Scholar 

  • Merkel, G. A., and Blencoe, J. G. (1978) Calculated activity coefficients and thermodynamic excess properties for high albite-sanidine feldspars at 2 kbar pressure, 600–700°C, Amer. Geophys. Union Trans. 59, 395.

    Google Scholar 

  • Merkel, G. A., and Blencoe, J. G. (in preparation) Thermodynamic mixing properties of binary analbite-sanidine feldspars.

    Google Scholar 

  • Müller, G. (1971) Der einfluss der Al, Si-Verteilung auf die mischungslücke der alkali-feldspäte, Contrib. Mineral. Petrol 34, 73–79.

    Article  Google Scholar 

  • Nukui, A., Nakazawa, H., and Akao, M. (1978) Thermal changes in monoclinic tridymite, Amer. Mineral. 63, 1252–1259.

    Google Scholar 

  • Okamura, F. P., and Ghose, S. (1975) Analbite-monalbite transition in a heat treated twinned Amelia albite, Contrib. Mineral Petrol 50, 211–216.

    Article  Google Scholar 

  • Orville, P. M. (1963) Alkali ion exchange between vapor and feldspar phases, Amer. J. Sci. 261, 201–237.

    Article  Google Scholar 

  • Orville, P. M. (1967) Unit-cell parameters of the microcline-low albite and the sanidine-high albite solid solution series. Amer. Mineral 52, 55–86.

    Google Scholar 

  • Parsons, I. (1978) Alkali feldspars: which solvus? Phys. Chem. Minerals 2, 199–213.

    Article  Google Scholar 

  • Perchuk, L. L., and Ryabchikov, I. D. (1968) Mineral equilibria in the system nepheline-alkali feldspar-plagioclase and their petrological significance, J. Petrology 9, 123–167.

    Google Scholar 

  • Pippard, A. B. (1966) Elements of Classical Thermodynamics. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rao, N. R., and Rao, K. J. (1978) Phase Transitions in Solids. McGraw-Hill, New York.

    Google Scholar 

  • Seck, H. A. (1972) The influence of pressure on the alkali feldspar solvus from peraluminous and persilicic materials, Fortschr. Mineral. 49, 31–49.

    Google Scholar 

  • Smith, P., and Parsons, I. (1974) The alkali-feldspar solvus at 1 kilobar water-vapour pressure, Mineral. Mag. 39, 747–767.

    Article  Google Scholar 

  • Thompson, A. B. and Perkins, E. H. (1981) Lambda transitions in minerals, in Advances in Physical Geochemistry, edited by R. C. Newton, A. Navrotsky, and B. J. Wood, Vol. 1. Springer-Verlag, New York.

    Google Scholar 

  • Thompson, and Wennemer, M. (1979) Heat capacities and inversions in tridymite, cristobalite, and tridymite-cristobalite mixed phases, Amer. Mineral. 64, 1018–1026.

    Google Scholar 

  • Thompson, J. Jr., and Hovis, G. L. (1979a) Entropy of mixing in sanidine, Amer. Mineral. 64, 57–65.

    Google Scholar 

  • Thompson, J. Jr., and Hovis, G. L. (1979b) Structural-thermodynamic relations of the alkali feldspars, Trans. Amer. Crystallogr. Assoc. 15, 1–26.

    Google Scholar 

  • Thompson, J. Jr., and Waldbaum, D. R. (1968) Mixing properties of sanidine crystalline solutions: I. Calculations based on ion-exchange data, Amer. Mineral. 53, 1965–1999.

    Google Scholar 

  • Thompson, J. Jr., and Waldbaum, D. R. (1969) Mixing properties of sanidine crystalline solutions: III. Calculations based on two-phase data, Amer. Mineral. 54, 811–838.

    Google Scholar 

  • Traetteberg, A., and Flood, H. (1972) Alkali ion exchange equilibria between feldspar phases and molten mixtures of potassium and sodium chloride, Trans. Roy. Inst. Technol. Stockholm 296, 608–618.

    Google Scholar 

  • Willaime, C, Brown, W. L., and Perucaud, M. C. (1974) On the orientation of the thermal and compositional stain ellipsoids in feldspars, Amer. Mineral. 59, 457–464.

    Google Scholar 

  • Winter, J. K., Okamura, F. P., and Ghose, S. (1979) A high-temperature structural study of high albite, monalbite, and the analbite → monalbite phase transition, Amer. Mineral. 64, 409–423.

    Google Scholar 

  • Wood, B. J. (1977) Experimental determination of the mixing properties of solid solutions with particular reference to garnet and clinopyroxene solutions, in Thermodynamics in Geology, edited by D. G. Fraser, pp. 11–27. Reidel, Dordrecht, The Netherlands.

    Google Scholar 

  • Wright, T. L., and Stewart, D. B. (1968) X-ray and optical study of alkali feldspar. I. Determination of composition and structural state from refined unit-cell parameters and 2V, Amer. Mineral. 53, 38–87.

    Google Scholar 

  • Zyrianov, V. N., Perchuk, L. L., and Podlesski, K. K. (1978) Nepheline-alkali feldspar equilibria: I. Experimental data and thermodynamic calculations, J. Petrology 19, 1–44.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Merkel, G.A., Blencoe, J.G. (1982). Thermodynamic Procedures for Treating the Monoclinic/Triclinic Inversion as a High-Order Phase Transition in Equations of State for Binary Analbite-Sanidine Feldspars. In: Saxena, S.K. (eds) Advances in Physical Geochemistry. Advances in Physical Geochemistry, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5683-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5683-0_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5685-4

  • Online ISBN: 978-1-4612-5683-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics