Skip to main content

Weathering of Martian Surface Rocks

  • Conference paper
Chemistry and Physics of Terrestrial Planets

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 6))

Abstract

The early 1960s marked the beginning of an extremely important trend in Martian investigation, i.e., exploration by space missions. From 1962 to 1976 more than a dozen spacecraft in the framework Mars, Mariner, and Viking space missions were launched, providing new and important data on the composition and structure of the Martian atmosphere and soil, as well as data on the planet’s physical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. B., and McCord, T. B. (1969) Mars: interpretation of spectral reflectivity of light and dark regions, J. Geophys. Res. 74, 4851–4856.

    Google Scholar 

  • Allen, C. C. (1979) Volcano-ice interactions on Mars, J Geophys. Res. 84, 8048–8059.

    Google Scholar 

  • Allen, C. C., Gooding, J. L., and Keil, K. (1980) Partially weathered basaltic glass—a martian soil analog, in Lunar and Planetary Science, Vol. XI, pp. 12–14. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Allen, C. C., Gooding, J. L., and Keil, K. (1981a) Hydrothermally altered impact melt from Brent and Ries craters, in Lunar and Planetary Science, Vol. XII, pp. 16–18. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Allen, C. C., Gooding, J. L., Jercinovic, M., and Keil, K. (1981b) Altered basaltic glasses: a terrestrial analog to the soil of Mars, Icarus 45, 347–369.

    Google Scholar 

  • Allen, C. C., Gooding, J. L., and Keil, K. (1982) Hydrothermally altered impact melt rock and breccia: contributions to the soil of Mars, J. Geophys. Res. 87, 10083–10102.

    Google Scholar 

  • Anderson, D. M., and Tice, A. R. (1979) The analysis of water in the martian regolith, J. Mol. Evol. 14, 33–38.

    Google Scholar 

  • Aronson, J. R., and Emslie, A. G. (1975) Composition of the martian dust as derived by infrared spectroscopy from Mariner 9, J. Geophys. Res. 80, 4925–4931.

    Google Scholar 

  • Baird, A. K., Toulmin, P., Clark, B. C., Rose, H. J., Keil, K., Jr. Christian, R. P., and Gooding, J. L. (1976) Mineralodic and petrologic implications of Viking geochemical results from Mars: Inter report, Science 194, 1288–1293.

    Google Scholar 

  • Baird, A. K., Castro, A. J., Clark, B. C., Toulmin, P., Rose, H. J., Keil, K., Jr., and Gooding, J. L. (1977) Viking X-ray fluorescence experiments: sampling strategies and laboratory simulations, J. Geophys. Res., 82, 4595–4624.

    Google Scholar 

  • Baird, A. K., and Clark, B. C. (1981) On the original igneous source of martian fines, Icarus 45, 113–123.

    Google Scholar 

  • Banin, A., and Rishpon, J. (1979) Smectite clays in Mars soil: evidence for their presence and role in Viking biology experimental results, J. Mol. Evol. 14, 133–152.

    Google Scholar 

  • Banin, A., and Margulies, L. (1983) Simulation of Viking biology experiments suggest smectites not palagonites as martian soil analogues, Nature (London) 305, 523–525.

    Google Scholar 

  • Banin, A., and Margulies, L. (1984) Iron montmorillonite: spectral analogy to Mars soil, in Lunar and Planetary Science, Vol. XV, pp. 31–32. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Barner, V. R. (1982) Channels on Mars. Univ. Texas Press, 1982.

    Google Scholar 

  • Basilevsky, A. T., Moskaleva, L. P., Manvelyan, O. S., and Surkov, Yu. A. (1981) Estimation of thorium and uranium contents in the material of Martian surface: new interpretation of gamma-spectrometric measurements by Mars-5 probe, Geochimistry 1, 10–16.

    Google Scholar 

  • Becker, R. H., and Repin, R. O. (1984) The case for a martian origin of the shergottites: nitrogen and noble gases in EETA 79001, Earth and Planet. Sci. Lett. 69, 225–242.

    Google Scholar 

  • Berkley, J. L., and Brake, M. J. (1981) Weathering of of Mars: Antarctic analog studies, Icarus 45, 231–249.

    Google Scholar 

  • Biemann, K. J., Oro, P., Toulmin, P., Orgel, L. E., Nier, A. O., Anderson, D. H., Simmonds, P. G., Flory, D., Diaz, A. V., Rushneck, D. R., Biller, J. E., and Lafleur, A. L. (1977) The search for organic substances and inorganic compounds in the surface Mars, J. Geophys. Res. 82, 4641–4658.

    Google Scholar 

  • Binder, A. B., and Jones, J. C. (1972) Spectrophotometric studies of the photometric functions, composition and distribution of the surface materials on Mars, J. Geophys. Res. 77, 3005–3020.

    Google Scholar 

  • Blackburn, T. R., Holland, H. D., and Ceasak, G. P. (1979) Viking gas exchange reaction: simulation on UV-iriadiated manganese dioxide substrate, J. Geophys. Res. 84, 8391–8394.

    Google Scholar 

  • Blackburn, T. R. (1984) Manganese oxides as high-pe redox buffers on Mars, Icarus 57, 307–312.

    Google Scholar 

  • Bogard, D. D., and Johnson, P. (1983) Martian atmospheric gases trapped in the EETA 79001 Shergottite?, in Lunar and Planetary Science, Vol. XIV, pp. 53–54. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Booth, M. C., and Kieffer, H. H. (1978) Carbonate formation in Marslike environments, J. Geophys. Res. 83, 1809–1815.

    Google Scholar 

  • Brass, G. W. (1980) Stability of brines on Mars, Icarus 42, 20–28.

    Google Scholar 

  • Burghele, A., Dreibus, G., Palme, H., Rammensee, W., Spettel, B., Weckwerth, G., and Wänke H. (1983) Chemistry of shergottites and the shergotty parent body (SPB): further evidence for the two component of formation, in Lunar and Planetary Science, Vol. XIV, pp. 80–81. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Burns, R. G. (1980) Does ferroxyhyte occur on the surface of Mars?, Nature (London) 285, 647.

    Google Scholar 

  • Busod, G., and McGetchin, T. R. (1979) Martian lavas-Reconnaissance experiments on a model ferro-picrite composition, in Lunar and Planetary Science, Vol. X, pp. 172–174. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Carr, M. H., and Clow G. D. (1981) Martian channels and valleys: their characteristics, distribution and age, Icarus 48, 91–117.

    Google Scholar 

  • Cess, R. D., Ramanathan V., and Owen T. (1980) The martian paleoclimate and enhanced atmospheric carbon dioxide, Icarus 41, 159–165.

    Google Scholar 

  • Christensen, P. R. (1982) Martian dust manting and surface composition: interpretation of thermophysical properties, J. Geophys. Res. 87, 9985–9998.

    Google Scholar 

  • Christensen, P. R. (1984) Thermal emissivity of the martian surface: evidence for compositional variations, in Lunar and Planetary Science, Vol. XV, pp. 150–151. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Clagton, R. N., and Mayeda, T. K. (1983) Oxygen isotopes in eucrites, shergottites nakhlites and chassignites, Earth Planet. Sci. Lett 62, 1–6.

    Google Scholar 

  • Clark, B. C., Baird, A. K., Rose, H. J., Klaas, K., Castro, A. J., Kelliher, W. C., Rowe, C. D., and Evans, P. H. (1976) Inorganic analyses of Martian surface samples at the Viking landing sites, Science 194, 1283–1288.

    Google Scholar 

  • Clark, B. C. (1978) Implications of abundant hydroscopic minerals in the martian regolith, Icarus 34, 645–665.

    Google Scholar 

  • Clark, B. C. (1979) Chemical and physical micro-environments at the Viking landing sites, J.Mol.Evol. 14, 13 - 31.

    Google Scholar 

  • Clark, B. C., and Baird, A. K. (1979b) Chemical analysis of martian surface materials: status report, in Lunar and Planetary Science, Vol. X, pp. 215–217. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Clark, B. C., and Baird, A. K. (1979c) Volatiles in the martian regolith, Geophys. Res. Lett. 6, 811–814.

    Google Scholar 

  • Clark, B. C., and Baird, A. K. (1979a) Is the martian lithosphere sulfur rich? J. Geophys. Res. 84, 8395–8403.

    Google Scholar 

  • Clark, B. C., Baird, A. K., and Keil K. (1979a) Composition and cosmochemical context of the surface fines of Mars, Meteoritics 14, 367.

    Google Scholar 

  • Clark, B. C., Kenley, S. L., O’Brien, D. L., Huss, G. R., Mack, R., and Baird, A. K. (1979b) Heterogeneous phase reactions of martian volatiles with putative regolith minerals, J. Mol. Evol. 14, 91–102.

    Google Scholar 

  • Clark, B. C. (1980) Aqueous transport of salts on Mars, in Lunar and Planetary Science, Vol. XI, pp. 152–154. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Clark, B. C., and Van Hart, D. C. (1981) The salts of Mars, Icarus 45, 370–378.

    Google Scholar 

  • Clark, B. C., Baird, A. K., Weldon, R. J., Tsusaki, D. M., Schnabee, L., and Candelaria, M. P. (1982) Chemical composition of Martian fines, J. Geophys. Res. 87, 10059–10067.

    Google Scholar 

  • Clark, R. N., and McCord, T. B. (1982) Mars residual north polar cap, Earth-based spectroscopic confirmation of water ice as a major constituent and evidence for hydrated minerals, Geophys. Res. 87, 367–370.

    Google Scholar 

  • Clifford, S. M., and Hillel, D. (1983) The stabilities of ground ice in the equatorial region on Mars, J. Geophys. Res. 88, 2456–2474.

    Google Scholar 

  • Deer, W. A., Howie, R. A., and Zussman, J. (1962). Rock-Forming Minerals. Longmans, London.

    Google Scholar 

  • Derlyukova, A. E., Tarakanov, B. M., Bunin, V. M., and Evdokimov, V. I. (1973) On the interaction of calcium chloride with oxygen and sulfur oxides, Zhurn. Neorgan. Khim. 18, 2341–2345.

    Google Scholar 

  • Evans, D. L., and Adams, J. B. (1979) Comparison of Viking lander multispectral images and laboratory reflectance spectra of terrestrial samples, Proc. 10th Lunar Sci. Conf., 1829–1834.

    Google Scholar 

  • Evans, D. L., Adams, J. B., and Wenner, D. B. (1980) Amorphous gels as possible analogs to martian weathering products, in Lunar and Planetary Science, Vol. 11, pp. 271–272. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Evans, D. L., and Adams, J. B. (1981) Comparison of spectral reflectance propertes of terestrial and martian surface determinated from landsat and Viking orbiter multi- spectral images, in Lunar and Planetary Science, Vol. 12, pp. 271–273. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Farmer, C. B., and Doms, P. E. (1979) Global seasonal variation of water vapor on Mars and the implications for permafrost, J. Geophys. Res. 84, 2881–2888.

    Google Scholar 

  • Fish, F. F. (1966) The stability of goethite on Mars, J. Geophys. Res. 71, 3063–3068.

    Google Scholar 

  • Fox, J. L., and Dolgarno, A. (1983) Nitrogen escape from Mars, J. Geophys. Res. 88, 9027–9032.

    Google Scholar 

  • Fuller, A. O., and Hargraves, R. B. (1978) Some consequences of liquid water saturated regolith in early martian history, Icarus 34, 614–621.

    Google Scholar 

  • Garvin, J. B., Mouginis-Maric, P. J., and Head, J. W. (1981) Characterization of rock population of planetary surface, techniques and priliminary analysis of Mars and Venus, Moon Planets 24, 355–387.

    Google Scholar 

  • Geptner, A. R. (1977) Palagonite in the process of palagonitization, Litho. Miner. Resour. 5, 113–139.

    Google Scholar 

  • Gibson, E. K., and Ransom, B. (1981) Soils and weathering processes in the dry valleys in Antarctica: analogs of the martian regolith, Proc. 12th Lunar Sci. Conf. 342–344.

    Google Scholar 

  • Gibson, E. K., Bustin, R., and Wentworth, S. (1982) Development of regoliths in Mars: line environments, in Lunar and Planetary Science, Vol. XIII, pp. 259–260. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Gibson, E. K., Presley, B. J., and Hatfield, J. (1984) Salts in the dry valleys of Antarctica, in Lunar and Planetary Science, Vol. XV, pp. 302–303. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Goettel, K. A. (1981) Density of the mantle of Mars, Geophys. Res. Lett. 8, 497–500.

    Google Scholar 

  • Gooding, J. L. (1978) Chemical weathering on Mars: Thermodynamic stabilities of primary minerals (and their weathering products) from mafic igneous rocks, Icarus 33, 483–513.

    Google Scholar 

  • Gooding, J. L. (1980) Geochemical fractionations during the evolution of martian soils, in Lunar and Planetary Science, Vol. XI, pp. 342–345. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Gooding, J. L., and Keil, K. (1978) Alteration of glass as a possible source of clay minerals on Mars, Geophys. Res. Lett. 5, 727–730.

    Google Scholar 

  • Greeley, R., and Spudis P. D. (1981) Volcanism on Mars, Rev. Geophys. Space Phys. 19, 13–41.

    Google Scholar 

  • Hanel, R. B., Conrath, W., Hovis, V., Kunde, V., Lowman, P., Maguire, W., Pearl, J., Pirraglia, J., Prabhakara, C., Schlachman, B., Levin, G., Straat, P., and Burke, T. (1972) Investigation of the Martian environment by infrared spectroscopy on Mariner 9, Icarus 17, 423–442.

    Google Scholar 

  • Hargraves, R. B., Collinson, D. W., Arvidson, R. E., and Spitzer, C. R. (1977) The Viking magnetic properties experiment: primary mission results, J. Geophys. Res. 82, 4547–4558.

    Google Scholar 

  • Hargraves, R. B., Collinson, D. W., Arvidson, R. E., and Cates, P. M. (1979) Viking magnetic properties experiment: extended mission results, J. Geophys. Res. 84, 8379–8384.

    Google Scholar 

  • Heuriksson, M., and Warngvist, B. (1979) Kinetics of formation of HCl(g) by the reaction between NaCl(s) and SO2, O2, H2O, Ind. Eng. Chim. Proc. Des. Devel 18, 249–254.

    Google Scholar 

  • Horn, D., McAfee, J. M., Winer, A. M., Herr, K. C., and Pimental, G. C. (1972) The composition of martian atmosphere: minor constituent, Icarus 16, 543–556.

    Google Scholar 

  • Houstley, R. M. (1981) Considerations concerning the weathering history and sulfur content the martian regolith, in Lunar and Planetary Science, Vol. XII, pp. 374–376. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Huck, F. O., Jobson, D. J., Park, S. K., Wall, S. D., Arvidson, R. E., Patterson, W. R., and Benton, W. D. (1977) Spectrophometric and color estimates of the Viking lander sites, J. Geophys. Res. 82, 4401–4411.

    Google Scholar 

  • Huguenin, R. L. (1973a) Photostimulated oxidation of magnetite 1. Kinetics and alteration phase indentification, J. Geophys. Res. 78, 8481–8493.

    Google Scholar 

  • Huguenin, R. L. (1973b) Photostimulated oxidation of magnetite 2. Mechanism, J. Geophys. Res. 78, 8495–8506.

    Google Scholar 

  • Huguenin, R. L. (1974) The formation of goethite and hydrated clay minerals on Mars, J. Geophys. Res. 79, 3895–3905.

    Google Scholar 

  • Huguenin, R. L., Miller, K. L., and Harwood, W. S. (1979) Frost-weathering on Mars: experimental evidence for peroxide formation, J. Mol. Evol. 14, 103–132.

    Google Scholar 

  • Huguenin, R. L., Denielson, J., and Clifford, S. (1980) Additional experimental evidence for the photostimulated oxidation of magnetite on Mars, in Reports Planetary Geology Program 19781979, pp. 147–148. TM-81776 NASA.

    Google Scholar 

  • Huguenin, R. L. (1982) Chemical weathering and the Viking biology experiments on Mars, J. Geophys. Res. 87, 10069–10082.

    Google Scholar 

  • Huguenin, R. L., and Clifford, S. M. (1982) Remote sensing evidence for regolith water vapor sources on Mars, J. Geophys. Res. 87, 10227–10252.

    Google Scholar 

  • Huguenin, R. L., Miller, K. J., and Leschine, S. B. (1983) Mars: a contamination potential? Advan. Space Res. 8, 35–38.

    Google Scholar 

  • Hunt, G. R., Logan, L. M., and Salisbury, J. H. (1973) Mars: components of infrared spectra and the composition of dust cloud, Icarus 18, 459–469.

    Google Scholar 

  • Hunten, D. M. (1979) Possible oxidate sources in atmosphere and surface of Mars, J. Molec. Evol. 14, 71–78.

    Google Scholar 

  • Jakosky, B. M., and Muhleman, D. O. (1981) A comparison of the thermal and radar characteristics of Mars, Icsrus 45, 25–38.

    Google Scholar 

  • Khodakovsky, I. L., Volkov, V. P., Sidorov, Yu. I., and Borisov, M. V. (1979) Venus: Preliminary prediction of mineral composition of surface rocks, Icarus 39, 352–363.

    Google Scholar 

  • Kieffer, H. H., Martin T. Z., Peterfreund, A. R., Jakosky, B. M., Miner, E. D., and Palluconi, F. D. (1977) Thermal and albedo mapping of Mars during the Viking primary missions, J. Geophys. Res. 82, 4249–4291.

    Google Scholar 

  • Kotra, R. K., Gibson, E. K., and Urbanicic, M. A. (1982) Relise of volatiles from possible martian analogs, Icarus 51, 593–605.

    Google Scholar 

  • Ku’min , R. O. (1980) Determination of ice-bearing rock-roof depth on Mars from morphology of fresh craters, Dokl. Akad. Nauk USSR, 252, 1445–1448.

    Google Scholar 

  • Ku’min , R. O. (1983) Martian Cryolithosphere, Izd-vo Nauka, Moscow.

    Google Scholar 

  • Leovy, C. B. (1979) Martian meteorology, Ann. Rev. Astron. Astrophys. 17, 387–414.

    Google Scholar 

  • Lewis, J. S. (1970) Venus: atmospheric and lithospheric composition, Earth Planet. Sci. Lett. 10, 73–80.

    Google Scholar 

  • Logan, L. M., Hunt, G. R., and Salisbury, J. J. (1975) The use of mid-infrared spectroscopy in remote sensing of space targets, in Infrared and Roman Spectra of Lunar and Terrestrial minerals, pp. 117–142 edited by C. Karr, Academic Press, New York.

    Google Scholar 

  • Lucchitta, B. K.194) A late climatic change on Mars, in Lunar and Planetary Science, Vol. XV, pp. 493–494. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Mackenzie, K. J. D., and Rogers, D. E. (1977) Thermal and Mössbauer studies of iron containing hydrous silicate. I-Nontronite, Thermochim. Acta 18, 177–196.

    Google Scholar 

  • Maderazzo, M., and Huguenin, R. L. (1977) Petrologic interpretation of Viking XFF analysis based on reflection spectra and the photochemical weathering model, Bull. Amer. Astron. Soc. 9, 527–528.

    Google Scholar 

  • Masursky, H., Boyce, J. M., Dial, A. L., Schaber, G. G., and Strobell, M. E. (1977) Classification and time of formation of martian channels based on Viking data, J. Geophys. Res. 82, 4016–4038.

    Google Scholar 

  • McCord, T. B., Clark, R. N., and Huguenin, R. L. (1978) Mars: near-infrared spectral reflectances and compositional implications, J. Geophys. Res. 83, 5433–5441.

    Google Scholar 

  • McCord, T. B., Clark, R. N., and Singer, R. B. (1982a) Mars: near-infrared spectra reflectance of surface regions and compositional implications, J. Geophys. Res. 87, 3021–3032.

    Google Scholar 

  • McCord, T. B., Singer, R. B., Hawke, B. R., Adams, J. B., Evans, D. L., Head, F. W., Monginis-Mark, P. J., Pieters, C. M., Huguenin, R. L., and Zick, S. H. (1982b) Mars: definition and characterization of global surface units with emphasis on composition, J. Geophys. Res. 87, 10129–10148.

    Google Scholar 

  • McElroy, M. B., Yung, Y. L., and Nier, A. O. (1976) Isotopic composition of nitrogen: implications for the past history of Mars atmosphere, Science 194, 70–72.

    Google Scholar 

  • McElroy, M. B., Kong, T. Y., and Yung, Y. L. (1977) Photochemistry and evolution of Mars atmosphere: a Viking perspective, J. Geophys. Res. 82, 4379–4388.

    Google Scholar 

  • McGetchin, T. R., and Smyth, J. R. (1978) The mantle of Mars: some possible geological implications of its high density, Icarus 34, 512–536.

    Google Scholar 

  • Michael, W. H., Maoy, A. P., Blackshear, W. T., Tolson, R. H., Kelly, G. M., Brenkle, J. P., Cain, D. L., Fjeldbo, G., Sweetnam, D. N., Coldstecn, R. B., MacNell, P. E., Reasesenberg, R. D., Shapiro, 1.1., Boak, T. I. S., Grossi, M. D., and Tany, C. H. (1976) Mars dinamics atmospheric and surface properties: determination from Viking tracking data, Science 194, 1337–1338.

    Google Scholar 

  • Moore, H. J., Hutton, R. E., Scott, R. F., Spitzer, C. R., and Shorthill, R. W. (1977) Surface materials of the Viking landing sites, J. Geophys. Res. 82, 4497–4523.

    Google Scholar 

  • Moore, H. J. (1979) Yield strengths of diverse flows on the flanks of Elysium, Ascracus and Arsia Montes, Mars, in Reports Planetary Geology Program 1978-1979, pp. 63–64. TM-80339, NASA.

    Google Scholar 

  • Morgan, J. W., and Anders, E. (1979) Chemical composition of Mars, Geochim. Cosmo- chim. Acta 43, 1601–1610.

    Google Scholar 

  • Moroz, V. I. (1978) Physics of Planet Mars. Izd-vo Nauka, Koscow.

    Google Scholar 

  • Morris, R. V., and Lauer, H. V., Jr. 1980. The case against UV photostimulated oxidation of magnetite, Geophys. Res. Lett. 7, 605–608.

    Google Scholar 

  • Morris, R. V., and Lauer, H. V., Jr. (1981) Stability of goetite (α-FeOOH) and lepidocrocite (δ-FeOOH) to dehydration by UV-radiation: implications for their occurrence on martian surface, J. Geophys. Res. 86, 10893–10899.

    Google Scholar 

  • Morris, R. V., and Neely, S. C. (1981) Diffuse reflectance spectra of pigmentary-sized iron oxides, iron oxihydroxides and their mixtures: implications for reflectance spectra of Mars, in Lunar and Planetary Science, Vol. XII, pp. 723–725. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Morris, R. V., and Lauer, H. V., Jr. (1984) Spectral properties of annealed (FexAl1-x)2O3 gels with applications to Mars, in Lunar and Planetary Science, Vol. XV, pp. 571 - 572. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Moskowitz, B. M., and Hargraves, R. B. (1982) Magnetic changes accompanying the thermal decomposition of nontronite (in air) and its relevance to martian mineralogy, J. Geophys. Res. 87, 10115–10128.

    Google Scholar 

  • Mueller, R. F. (1963) Chemistry and petrology of Venus preliminary deductions, Science 141, 1046–1047.

    Google Scholar 

  • Naumov, G. B., Ryzhenko, B. N., and Khodakovsky, I. L. (1971) Handbook of Thermodynamic Values. Izd-vo, Atomizdat, Moscow.

    Google Scholar 

  • Neukum, G., and Hiller, R. (1981) Martian ages, J. Geophys. Res. 86, 3097–3121.

    Google Scholar 

  • Newson, H. E. (1980) Hydro thermal alteration of impact melt sheets with implication for Mars, Icarus 44, 207–216.

    Google Scholar 

  • O’Connor, J. T. (1968a) Mineral stability at the martian surface, J. Geophys. Res. 73, 5301–5311.

    Google Scholar 

  • O’Connor, J. T. (1968b) “Fossil” martian weathering, Icarus 8, 513–517.

    Google Scholar 

  • Owen, T., and Sagan C. (1972) Minor costituents in planetary atmosphere ultraviolet spectroscopy from the Orbiting Astronomical Observatory, Icarus 16, 557–568.

    Google Scholar 

  • Owen, T., Biemann, K., Rushueck, D. R., Bieller, J. E., Howath, D. W., and Lableur, A. L. (1977) The composition of the atmosphere at the surface of Mars, J. Geophys. Res. 82, 4635–4639.

    Google Scholar 

  • Oyama, V. I., and Berdahl, B. J. (1977) The Viking gas exchange experiment results from Chryse and Utopia surface samples, J. Geophys. Res. 82, 4669–4676.

    Google Scholar 

  • Oyama, V. I., and Berdahl, B. I. (1979) A model of martian surface chemistry, J. Mol. Evol. 14, 199–210.

    Google Scholar 

  • Palluconi, F. D., and Kieffer, H. H. (1981) Thermal inertia mapping from 60°S to 60°N, Icarus 45, 415–426.

    Google Scholar 

  • Pang, K. D., and Ajello, J. M. (1977) Complex refractive index of martian dust: wavelength dependence and composition, Icarus 30, 63–74.

    Google Scholar 

  • Pieri, D. C. (1980) Martian valleys: morphology, distribution, age and origin, Science 210, 895–897.

    Google Scholar 

  • Pollack, J. B., Pitman, D., Khare, B. N., and Sagan, C. (1970a) Goetite on Mars: A laboratory study of physically bound water in ferric oxides, J. Geophys. Res. 75, 7480–7490.

    Google Scholar 

  • Pollack, J. B., Wilson, R. N., Goles, G. G. (1970b) A re-examination of the stability of geotite on Mars, J. Geophys. Res. 75, 7491–7500.

    Google Scholar 

  • Pollack, J. B., Colburn, D., Kahn, R., Hunter, J., and Van Camp, W. (1977) Properties of aerosols in the Martian atmosphere, as infrafed from Viking lander imaging data, J. Geophys. Res. 82, 4479–4496.

    Google Scholar 

  • Pollack, J. B., Colburn, D. S., Frasar, F. M., Kahn, R., Carlston, C. E., and Pidek, D. (1979) Properties and effects of dust particles suspended in martian atmosphere, J. Geophys. Res. 84, 2929–2945.

    Google Scholar 

  • Report of the CODATA Task Group on Key Veluesfor Thermodynamics (1969–1979).

    Google Scholar 

  • Ringwood, A. E. (1975) Composition and Petrology of the Earth’s Mantle. McGraw-Hill Book Company, New-York.

    Google Scholar 

  • Robie, R. A., Hemingway, B. S., Fisher, J. R. (1978) Thermodynamic properties of mineral and related substances at 298, 15K and lbar (105 Pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull. N1452, Washington, D.C.

    Google Scholar 

  • Rossbacher, L. A., and Sheldon, J. (1981) Ground ice on Mars: Inventory, distribution and resulting landform, Icarus 45, 39–59.

    Google Scholar 

  • Settle, M. (1979) Formation and deposition of volcanic sulfate aerozols on Mars, J. Geophys. Res. 84, 8343–8354.

    Google Scholar 

  • Shvarov Yu. V. (1978) On minimization of thermodynamic potential of open chemical system, Geochemistry 12, 1892–1895.

    Google Scholar 

  • Sherman, D. M., Burns, R. G., and Burns, V. M. (1981) Assessment of ferric iron oxide minerals likely to occur on Mars, in Lunar and Planetary Science, Vol. XII, pp. 970– 972. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Sherman, D. M. (1982) Non-stoichiometric maghemite on Mars, in Lunar and Planetary Science, Vol. XIII, pp. 720–721. Lunar and Planetary Institute Houston, Texas.

    Google Scholar 

  • Sherman, D. M., Burns, R. G., and Burns, V. M. (1982) Spectral characteristics of the oxides with application to the Martian bright region mineralogy, J. Geophys. Res. 87, 10169–10180.

    Google Scholar 

  • Sherman, D. M. (1984) Reassigment of the iron (III) absorption bands in the spectra of Mars, in Lunar and Planetary Science, Vol. XV, pp. 764–765. Lunar and Planetary Institute Houston, Texas.

    Google Scholar 

  • Singer, R. B., McCord, T. B., Clark, R. N., Adams, J. B., and Huguenin, R. L. (1979) Mars surface composition from reflectance spectroscopy: a summary, J. Geophys. Res. 84, 8415–8426.

    Google Scholar 

  • Singer, R. B. (1981) Spectral constraints on iron-rich smectites as abundant constituents of martian soil, in Lunar and Planetary Science, Vol. XII, pp. 996–998. Lunar and Planetary Institute Houston, Texas.

    Google Scholar 

  • Singer, R. B. (1982) Spectral evidence for the mineralogy of high-albedo soils and dust on Mars, J. Geophys. Res. 87, 10159–10168.

    Google Scholar 

  • Soderblom, L. A., and Wenner, D. B. (1978) Possible fossil H20 liquid-ice interfaces in the Martian crust, Icarus 34, 622–637.

    Google Scholar 

  • Stephen, D. M. (1981) Analysis of condensates formed at the Viking 2 lander site: the first winter, Icarus 47, 173–183.

    Google Scholar 

  • Strickland, E. L. (1979) Martian soil stratigraphy and rock coatings observed in color- enhanced Viking lander images, Proc. 10th Lunar Planet. Sci. Conf, pp. 3055–3077.

    Google Scholar 

  • Surkov, Yu. A., Moskaleva, L. P., Manvelyan, O. S., and Kharyukova, V. P. (1980) The analysis of Martian rock gamma-radiation based on Mars 5 space probe, Kosm. Issled. 15, 623–631.

    Google Scholar 

  • Taylor S. R., and Hodges R. R. (1981) Chlorine and sulfur abundances in Mars and the Moon: implications for bulk composition, in Lunar and Planetary Science, Vol. XII, pp. 1082–1083. Lunar and Planetary Institute Houston, Texas.

    Google Scholar 

  • Glushko, V. P. (Ed.) (1965-1982) Thermal Constants of Substances, Vols. I-X. Izd-vo, VINITI, Moscow.

    Google Scholar 

  • Glushko V. P. (Ed.) (1979-1983) Thermodynamic Properties of Individual Substances Vols. I-IV. Izd-vo, Nauka, Moscow.

    Google Scholar 

  • Toon, O. B., Pollack, J. B., and Sagan, C. (1977) Physical properties of the particles composing the martian dust storm of 1971-1972, Icarus 30, 663–696.

    Google Scholar 

  • Toon, O. B., Khare, B. N., Pollack, J. B., and Sagan C. (1979) Martian surface composition: comparison of remote spectral studies and in situ X-ray fluorescence analysis, in Reports Planetary Geology Program. TM-79729, NASA.

    Google Scholar 

  • Toon, O. B., Pollack, J. B., Ward, W., Burns, J. A., and Bilski, K. (1980) The astronomical theory of climatic change on Mars, Icarus 44, 552–607.

    Google Scholar 

  • Toulmin, P., Baird, A. K., Clark, B. C., Keil, K., Rose, H. S., Jr., Christain, R. P., Evans, P. H., and Kellihez, W. C. (1977) Geochemical and mineralogical interpretation of the Viking inorganic chemical results, J. Geophys. Res. 82, 4625–4634.

    Google Scholar 

  • Ugolini, F. C., and Anderson, D. M. (1972) Ionic migration in frozen Antarctic soil, Antarct.J. 7, 112–113.

    Google Scholar 

  • Van Hote, G., and Dolman, B. (1978) Cinetiqie de la réaction du sulfite de Calcium avec ë oxygéné, Bull. Soc. Chim. France 1112, 413–418.

    Google Scholar 

  • Van Hote, G., and Dolman, B. (1979a) Kinetics of reaction of CaCO3 with SO2 and O2 below 650°C, J. Chem. Soc. Faraday Trans. 75, 1593–1605.

    Google Scholar 

  • Van Hote, G., and Dolman B. (1979b) Kinetics of the reaction of CaSO3 and CaCO3 with SO2 in presente of CaCl2, Bull Soc. Chim. Belg. 88, 205–213.

    Google Scholar 

  • Weldon, R. J., Warren, M., Boslough, M. B., and Ahrens, T. J. (1982) Shock-induced color changes in nontronite: implications for the Mars fines J. Geophys. Res. 87, 10102–10114.

    Google Scholar 

  • Wentworth, S. J., and McKay, D. S. (1982) Silicate weathering and diagenesis in on Antarctic soil-Mars analog, in Lunar and Planetary Science, Vol. XIII, pp. 853–855. Lunar and Planetary Institute Houston, Texas.

    Google Scholar 

  • Yung, Y. L., Strobel, D. F., Kong, T. Y., and McElroy, M. B. (1977) Photochemistry of nitrogen in the martian atmosphere, Icarus 30, 26–41.

    Google Scholar 

  • Zisk, S. H., and Monginis-Mark, P. J. (1980) Anomalous region on Mars, implication for near-surface liquid water, Nature (London) 288, 126–129.

    Google Scholar 

  • Zolotov, M. Yu., Sidorov, Yu. I., Volkov, V. P., Borisov, M. V., and Khodakovsky, I. L. (1983) Mineral composition of martian regolith: thermodynamic assessment, in Lunar and Planetary Science, Vol. XIV, pp. 883–884. Lunar and Planetary Institute Houston, Texas.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Sidorov, Y.I., Zolotov, M.Y. (1986). Weathering of Martian Surface Rocks. In: Saxena, S.K. (eds) Chemistry and Physics of Terrestrial Planets. Advances in Physical Geochemistry, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4928-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4928-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9363-7

  • Online ISBN: 978-1-4612-4928-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics